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Executive Summary

This deliverable of work package WP3 presents a summary of the most recent research results on estima-
tion and control of robots with Variable Impedance Actuation (VIA) obtained by the partners of SAPHARI and
developed during the first two years of the project.

The possibility of exploiting the characteristics of such devices in planning and feedback control requires the
knowledge of the actual impedance of the robot joints. However, no sensor is available for the direct measure
of such physical quantities. Therefore, in the first part of the document, three competitive approaches are
presented for estimating the stiffness or damping of a single VIA joint. Emphasis is given to methods that
are non-invasive (i.e., which can be used without modifying the device), require less sensing information, can
work efficiently on line (so as to capture the time-varying nature of the problem), and are robust with respect
to measurement or input noise and uncertainty in model parameters.

Experimental validation has been made on single-dof VSA and VDA units, but extension to multi-dof robots
is rather straightforward, thanks to the decentralized design of the proposed methods. In the next period, we
are planning to perform also a quantitative comparison of the performance of these estimation methods, which
now constitute the state-of-the-art in the field, on the gbmove VSA systems developed within SAPHARI and
recently distributed to the involved partners.

The second part of the document focuses on control laws that take advantage of the variable compliance
(and nonlinear resonant modes) of the robot joints for generating desired cyclic motions. The underlying idea
is to use the natural dynamics of VIA robots to induce, by means of a suitable attractive control action, a task-
oriented periodic motion that is also very energy efficient. This can be used for highly dynamic and complex
motions, such as hitting and throwing (with the robot upper body), or walking and running (with the lower
limbs). Representative experimental results have been already obtained on the DLR Hand Arm System.

A final section is devoted to an optimal control problem for visco-elastic compliant joints, where analytical
and numerical tools are used so as to achieve the largest possible link velocity in a given time. This is another
example of the intensive research activity of SAPHARI on the optimization of dynamic performance of various
classes of compliantly actuated robots, as already presented in milestone MS3 Optimal control of modular VSA
manipulators reached @M12 and in the published scientific papers.

We also mention that activities within the specific task T3.2 of WP3 will continue as planned until the end
of the project (the next deliverable D3.2.2 Experimental validation of control laws for multi-dof VIA manipu-
lators is due @M48), so that the estimation and control results summarized in this document can be further
developed, integrated, tested, and refined through practical use on different platforms.
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1 Introduction

In this report we consider some estimation and control problems that arise in robots using Variable Impedance
Actuation (VIA), and more specifically actuators that allow a variable stiffness (VSA) or variable physical damp-
ing (VDPA).

The need for estimating the actual stiffness and/or damping of such actuator/transmission units is due to
the fact that there is no sensor available to measure directly these quantities. In turn, accurate values are
needed for the best performance of model-based optimal/feedforward commands or for the implementation
of advanced feedback laws, e.g., those guaranteeing simultaneous and decoupled motion-stiffness control.

The strong dynamic interplay between potential energy (due to transmission deflection) and kinetic en-
ergy in robots with constant or variable compliant joints poses new additional challenges beside the tradi-
tional control tasks of accurate trajectory tracking or stable force interaction. Suitable optimal control actions
can be designed in order to obtain extremely large motion speeds and/or impulsive forces or, conversely, for
preventing and excessive (unsafe) energy accumulation. It is also possible to exploit the natural vibrational
dynamics of these nonlinear compliant mechanical systems to realize cyclic or periodic tasks in a robust and
energy-efficient way.

After recalling in Secthe basic dynamic modeling for robotic devices with VSA, the two Sectionsand@
present the latest and most robust versions of the stiffness estimation algorithms developed by UNIPI and
UNIROMAL, respectively, for a single-dof antagonistic VSA unit. Both approaches work on the motor side of
the compliant transmission units, and can thus be immediately generalized to the multi-dof case. Moreover,
they do not require necessarily a joint torque sensor. They differ in the processing of measured data, which
is done in order to avoid differentiation of noisy measures, in the way measurements are filtered, and in the
actual implementation of the following Recursive Least Squares (RLS) method.

Section [5| presents the extension by IIT of a similar approach for the estimation of damping in a VDPA.
Special care is used to address the time-varying nature of frictional phenomena (e.g., in the used clutch).

Two control approaches for generating cyclic motions in compliant robots are proposed by DLR in Sect. @
The first method exactly decouples the partially feedback linearized dynamics of the robot using complete
model information, and yields then a globally attractive limit cycle along a desired oscillation mode. The second
method directly excites the natural dominant oscillation mode of the compliant robot, requiring no model
knowledge but only measurements of the states of the actuated joints.

Finally, the short Sectionis devoted to an optimal control problem in which the role of damping is investi-
gated, when trying to maximize in a finite time window the velocity of a link driven by a visco-elastic joint. This
result by DLR complements the previous activities of this partner and of UNIPI on the use of optimal control
tools and methods for optimizing the dynamic performance of VIA-based robots.

2 Dynamic modeling

Flexible transmissions are characterized by elastic elements that allow a deformation (or displacement) ¢ be-
tween the motor angle 6 and the link angle ¢ (¢ = ¢ — ). A smooth potential function U.(¢) > 0 is as-
sociated to the deformation ¢, with U.(¢) = 0 iff ¢ = 0. The flexibility torque across the transmission is
Te(¢) = OUc(¢)/0¢. The stiffness of the transmission is defined as the variation rate of the flexibility torque
Te(¢) w.r.t. the deformation ¢,

_ 0re(9) _ 97e(9)
- 9¢ 99

For a single motor driving a rigid link subject to gravity through a (nonlinear) flexible transmission, see

o(9)

> 0. (1)
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Fig. a), the dynamic model takes the form
Mg+ Dqg + Te(@) + 9(q) = Text (2)
Bl + Dy — 7e() = T, 3)
where M > 0and B > 0 are the link and motor inertias, D, > 0 and Dy > 0 are the viscous friction
coefficients at the two sides of the transmission, 7 is the control torque on the motor side, and g(q) and Tex
are respectively the gravity and the environment/disturbance torques acting on the link.

]_Bl'DU-I. Te.1 Te2 .Bg' 1)0’2

[ wi
motor 2| T2
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"“ link )
|
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(a) (b)

Figure 1: Schematic models of a link driven (a) by a single flexible transmission, or (b) by a VSA in antagonistic
arrangement

An antagonistic Variable Stiffness Actuator (VSA), see Fig. b), is characterized by two motors working
in parallel and antagonistically connected to the driven link through nonlinear transmissions. Although dif-
ferent arrangements are possible, we will consider here only the bi-directional one, which is also denoted as
the Agonistic-Antagonistic (AA) configuration, see [2]. Depending on the realization, the nonlinearity of the
deformation/torque characteristic of the transmissions results either by the use of nonlinear (e.g., cubic or ex-
ponential) springs or by the arrangement of linear springs in a nonlinear kinematic mechanism. Representative
devices in this class are the biologically inspired VSA [31] and the VSA-II [41].

The pair of motor-transmission units are modeled with two similar equations of the form , where each
motor-transmission undergoes a deformation ¢; = ¢ — 6;, for i = 1, 2. The dynamics of an antagonistic VSA
is thus

Mg+ qu + Te,t(d)) + g(Q) = Text (4)
Byi0; + Do ibi — 7ei(¢i) = 1, i=1,2. (5)

In this case, the (total) flexibility torque transmitted to the driven link and the associated (total) device stiffness
are given respectively by

Tet = Te 1 (@1) + Te2(d2) (6)
and
or(@) = o1(d1) + 2(2), (7)
where
() = 37(%@) >0, i=1,2 (8)
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are the local stiffnesses of the two transmissions and ¢ = (¢1 ¢2)7. We stress the separability of the func-
tions @ and , whereas one has in general ¢1 # ¢2. Most of the times the two motor-transmission units
are identical (perfect symmetry). However, our later developments apply directly also to the general case.

A general dynamic model of a n-dof manipulator driven by VSA can be written by compounding the robot
link dynamics with the proper m motor equations.

For multi-dof robots using VSA in antagonistic configurations, we have m = 2n and the motor equations
are of the form introduced above. For serial configurations of VSA (like in the case of the DLR VS joint or
the IIT AwAS device), we still have m = 2n motors, but the two motors at each joint are different in size,
functionality, and mathematical model. Sometimes, the assumption is made that the dynamics of the smaller
motors used to adjust the joint stiffness can be neglected. In that case, only m = n differential equations are
left in the dynamic model describing the principal motors that actuate the n robot links through (nonlinear)
flexible transmissions, while another vector of m = n static parameters is present that can be instantaneously
changed in order to modify the robot joint stiffnesses. With this in mind, we will let the number m of motor
equations unspecified so as to cover all interesting situations.

Furthermore, we take a similar assumption as in the modeling robots with elastic joints of constant stiff-
ness [44], namely that the rotational kinetic energy of the rotors of the two motors at each joint is due only to
their own spinning. Under this assumption, and neglecting for simplicity dissipative terms, the dynamic model
for a multi-link robot driven by (serial or antagonistic) VSA takes the form

M(q)qg+C(q,q4)q+9g(q) = T (9)
BO + Te =T (10)

_ (9U(0,q9,75)\"
Te = <80> =90 —q,75), (11)

where M(q) € R™™ is the symmetric and positive definite link inertia matrix, C(q, ¢)q are the Corio-
lis/centrifugal terms, g(q) is the gravitational term, and B € R"™*™ denotes the constant, diagonal, and
positive definite motor inertia matrix. Moreover, w, € R™ is a set of parameters possibly used to change the
stiffness characteristics of the flexible transmissions. The robot configuration variables z = (87 ¢7)” € R™+"
can be divided into motor positions & € R™ and link positions ¢ € R™. Only the motor states (6, 9) are di-
rectly actuated via the control input 7 € R". In most cases, including the DLR Hand-Arm VSA-based system,
the vector function 1 that expresses the flexibility torques across the flexible transmissions has a local, sepa-
rable dependence: for the generic joint ¢, we have ; = w(ei —¢;) (the parametric dependence on 7, is often
dropped). Note that the definition of the flexibility torque in eq. has the opposite sign with respect to the
one used in egs. or . In Sect.@on control, we will also use the property that the inverse function
! exists, and thus that & — g = ¥ (7).

3 Stiffness estimation using modulating functions

We consider the problem of estimating the nonlinear stiffness of a single VSA in Agonistic-Antagonist (AA)
configuration. We propose here an algorithm based on modulating functions. which allow to avoid the need
of numerical derivatives and for which the tuning is very simple. An analysis of the errors indicates the nature
of the estimation convergence and provides guidelines for tuning the parameters of the algorithm.

We first present the modulating functions and give some useful properties that are used then to define
the stiffness estimator. The effects of measurement noise and truncation errors are analyzed next. Simula-
tion results are provided to illustrate the role of parameters of the algorithm on performance, and finally the
method is validated on experimental data. The results summarized in this section are presented in [29] and in
the submitted paper [30].
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3.1 Modulating functions

The following definitions and proposition come from [37], and have been slightly modified for our needs.

Definition 1 A modulating function of order h on [a, b] (a,b € R) is a function 1) : [a,b] — R, h-times differ-
entiable such that: ‘ ‘
dp(a) = dip(b) =0, i=0,....h—1, (12)

where d' represent the i-th order derivative.
Example 1 Let us define the following function:

w;j(u) = (1 —u)u!, uweR,ijeN. (13)
Then, wy, », for h € N, is a modulating function of order h + 1 on [0, 1].

Definition 2 A function f : [a,b] — R integrable on [a,b] is modulated by taking the inner product with a
modulating function :

b
(o) = / onor (14)

Proposition 1 Let fi, fo be integrable real valued functions on [a, b, 1 a modulating function of order h on
[a,b] and C' € R a constant. Then, we have the following properties:

1. (d' f1,0) = (=) {f1,d), i=0,....k—1,
2. (Cf1+ f2,0) = C{f1,9) + (f2, V).

Property 1 is very important, because it allows to replace a derivative of a function f, which is usually unknown
or uncertain (for example, we only have access to a measured signal), by the derivative of the modulating
function for which the derivative is known and can be computed analytically.

3.2 Estimation algorithm

The estimation of the stiffness is derived from the two equations , that is, we look at the system on the
motor side. The algorithm is split into two parts. In the first part, the equations are differentiated to make the
stiffness appear explicitly, the stiffness is approximated by a Taylor expansion, and the resulting equations are
transformed, using modulating functions, so that only filtered versions of the measured signals are needed.
In the second part, a Recurslve Least Squares (RLS) algorithm is used to estimate the coefficients of the Taylor
expansion, and thus the stiffness itself.

We start from equation , that is:

Teﬂ'(qbi) = Blgl + Dgﬂ'él’ — Ty = 1, 2. (15)
Differentiating with respect to time the motor equations yields
1 3 2 1
0 i(9) = Bib” + Dy 0 — 7Y, (16)

where the shorthand notation z(*) has been used to denote the i-th derivative of a variable z w.rt. ime. We
take the following Taylor expansion approximation of order N (i.e., with N + 1 coefficients)

N o ()i
oi(¢i) =~ a}@, (17)
=0 '
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which gives the relation

Za —39(3)+D 0% — 70, (18)

Since the maximum derivative order is three, we need to take a modulating function 1 of order h = 4, which
will be defined later. Modulating eq. with 1, one obtains by Proposition :

N 1
< ]qb()(,@) ,¢> = < Bt + Dy i8> — 1Y, > (19)
§=0 I
i (@Y
ZO[;- <d <(]:‘ 1),) 71/]> = Bi <d392)1/)> + D@,i <d2917¢> - <d7'e,i7¢> ) (20)
j=0
N o (¢ )J+1
> <( ik 1/1> = Bi(0;,d*¢) — Dy; (0;, d*) — (7e, di)) . (21)
j=0

Therefore, the above is a relation between the stiffness and the measured signals 0; and 7 ;, where the only
source of error is in the Taylor approximation of the ;, ¢ = 1, 2.

If we want to estimate the parameters a; with a RLS algorithm, then we need a relation that shifts with
time t. For this purpose, we consider a = t—1"and b = t for the domain of the modulating function v, T" being
the length of the integration window. Then, the modulating function is taken as ¥(u) = (u —t +T)3(t — u)3.

We have the following relation:

Z w) (dip) (w)du = B; t 0;(u) (d>) (w)du — Dy t 0;(u) (d*) (u)du
(4 + 1! t—T t—

. g (22)
[ st @) ()
t—T
Performing the change of variable w = Tv + t — T and dividing by 7" yields
i (g2 1 (@) ! 3
Z o (T / G+ t+T(v— 1))(dw373)(y)dv> = Bi/ O;(t+T(v—1))(d’ws3)(v)dv
=0 0 : 0

1
—DWfAGN+T@—UXfmw@MV

1
_7? / ro st + T — 1)) (duwsy) (v)dv,
’ (23)
where the function ws 3 is one of those defined by eq. , namely for equal A = 3.
In order to obtain a discrete-time version of this relation, we assume that the sampling period is T and that
the integration window is a multiple of this period, T' = HT}, with H € N. Then, we take an approximation
of the integral with the trapezoidal method, that is:

1 H
/0 fwydum S Wonf(tm), (24)
m=0

with t,, = mTs, Wy =Wy =Ts/2and W,, =Ts, m=1,...,H — 1.
We finally obtain the following relation at the discrete-time sample k (corresponding to the continuous
time t = KT):

Z ozjyj A?I‘(k‘), (25)
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with A; = [ad, ..., o )T, T(k) = [,...~74]T, and where

H
Ci(k) = D _ 0 ((k —m)T) x (BWn(dPws3)(m/H) — Dg; Wi T(d*ws 3)(m/M))
m=0

H (26)
+ > 7o (k= m)Ts) (~T* W (dws3)(m/M))
m=0
and
. H it
Yitk)y =" <w> ((k —m)Ts) (T* W (dws 3)(m/H)) . (27)
m=0

For k < H, measured values at negative instants of times (k — m)Ts, i.e., with k — m < 0, are simply set to
zero. The derivatives of w3 3 needed in eq. are given by:

dws 3(u) = —3wsa 3 + 3wz 2, (28)
d*ws3 3(u) = 6w 3(u) — 18waa(u) + 6ws 1 (u), (29)
d3w373(u) = 611]073(’11,) + 54w172(u) — 54’LU271(U) + 6w3,0(u). (30)

Note that the definition of I'; and C; can be seen as filtering by a Finite Impulse Response (FIR) digital filter.
With the obtained discrete-time relation between the stiffness parameters in the Taylor expansion and the
measured signals, we can use a standard RLS algorithm (see, e.g., [27]) in order to obtain an approximation A;
of AZ

3.3 Error analysis and robustness

The estimation method just presented is made essentially of two steps: first, a relation between filtered ver-
sions of the measured data and the coefficients of the Taylor expansion of the stiffness is derived, then it is
used in a least squares algorithm. In principle, assuming perfect motor data, three are the possible sources
of errors: noise on the measurements (and on the actuating torques), truncation in the Taylor expansion, and
numerical integration errors. The noise w added to the measured data is assumed to be a stochastic variable
with zero mean and finite variance. On the other hand, the numerical integration error is assumed to be neg-
ligible. Reduction of the estimation error is pursued here by a suitable choice of parameters made only within
the first step of the method: we will see how to set design parameters so as to reduce sufficiently the negative
effects on the second step of the method. In particular, we shall treat analytically only the noise on the actu-
ating torques 7; (i = 1.2). Position sensors are fairly accurate, and so the effect of a small noise on position
measurements will be considered only in simulations.
Taking errors into account, equation can be rewritten as follows:

AlT(k) = Ci(k) + eg,, (k) + €., (k), i=1,2, (31)

where e}, (k) is the error due to truncation and e, (k) is the error due to noise (index i is for the two transmis-
sions of the VSA). Three different parameters can be used to reduce these errors: the length of the integration
window T, the order of the Taylor expansion M, and the sampling period T (note that these parameters are
linked via the relation H = T'/T}).
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Analysis of e}éN We start from equation , replacing the approximation of the stiffness by its true expres-
sion and following the same computations made for the proposed estimation method. We obtain:

H
€py (k) =D (0i =) - (¢:)((k —m)Ty) - T - Wiy, (dws 3(m/M)), (32)
m=0
where azNH is the Taylor expansion of o; up to order N 4 1. From the expression of the truncation error, we

see that in order to get a bound on this error, the transmission deformation ¢; has to be bounded. Hence, we
assume that there exist €1, €%, such that ¢;(k) € [¢], €4] for all £ > 0. Applying then Proposition 2 in [26], one
has
i 5 N+1 .
legy (k)] < T 3 sup loi(pi) —o; 7 (i)l 1=1,2. (33)
di€le]eh)

Analysis of efj We assume here that w is a white noise with zero mean and finite variance. Similarly to the
truncation error, we obtain that the noise error contribution is equal to

H
eL (k) =Y w((k —m)T)T*W,(dws 3(m/M)),  i=1,2. (34)

m=0

Applying Corollary 2 in [26], it follows that e, (k) converges to zero as H goes to infinity.

Setting of parameters The effect of the parameters on the different errors is summarized in Tab. From the
previous analysis, we can derive some indications for the tuning of the parameters. First, the sampling period
T should be taken as small as possible in order to reduce the effect of the noise. The length of the integration
window should be taken large enough to filter the noise, depending on the relative power between signal
and noise, which itself depends on the type and quality of the sensors. Even if increasing T" will increase the
truncation error, we see from eq, that this relation is linear, and typical values of T belong to the interval
[0.1,2] s. The setting of T"and N can be done independently, and the latter value will highly depend on the
range of transmission deformations ¢;.

Truncation error | Noise error contribution
N AN —
T, | — AN
T1 / N\

Table 1: Effect of parameters on the different types of errors

Convergence of the RLS We have shown until now that the error contributions can be made arbitrarily small,
uniformly with respect to time, by suitable tuning of some parameters in the method. The effect of uniformly
bounded errors on the estimation with a standard RLS algorithm have been studied in [13]. From Theorem 1
therein we obtain that, for uniformly bounded noise, the estimation error on the coefficients of the Taylor
expansion goes to zero as the bound on the error goes to zero. Thus, the error on the Taylor coefficients (and
hence the error on the stiffness itself) will eventually converge to zero. The conclusion is that we can achieve
arbitrarily small estimation errors on the stiffness by suitable tuning the design parameters of the method.
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(c) clean input torques

T
e

-

(d) link position (e) noisy deformations (f) noisy input torques

Figure 2: Clean (top) and noisy (bottom) data signals used in the simulations (deformations ¢; = ¢ — 0; are
affected by noise introduced on the measured motor positions 6;, fori = 1, 2)

3.4 Simulation results

We have considered an Agonistic-Antagonist VSA mechanism realized with two identical cubic springs whose
torque-deformation characteristic is described by the flexibility torque expression:

Tei = 10(¢ = 60;)°,  i=1,2. (35)

The motor and link parameters in egs. are: By = By = 10~* [kg m~2], M = 0.0179 [kg m~—2], Dy =
Dg o = 1.27 [Nms/rad], and D, = 0.0127 [Nm s/rad]. We consider only the case without gravity, i.e., g = 0.

We provide here the results of representative simulations using the the proposed method. The estimation
method was run on the sets of measurement data reported in Fig. In order to precisely evaluate the effects of
noise on the reconstruction of the device stiffness, three different cases are compared in simulation: without
noise, with white noise affecting the input torques 7; only, and finally with white noise affecting both the input
torques and the motor positions 6; (and thus, the deformations ¢; = ¢ — 0, that enter in the computations).
The measurement of the link position ¢ is assumed to be ideal.

The importance of noise is quantified by the Signal-to-Noise Ratio:

Var(signal without noise)

SNR — 20 |Og10

Var(noise)

Tthe lower is the SNR, the more significant is the noise. Noise on the flexibility torque measurements has been
taken large, corresponding to SNR = 9, while noise on motor positions was low with a SNR = 140. We
have also compared the effect of NV in eq. on the stiffness estimation. The best value in this case would be
N = 2, because the assumed flexibility torques are cubic polynomials in ¢; and thus the stiffness is a quadratic
function. Since the actual behavior of the springs in the transmissions might not be strictly polynomial (e.g.,
we may consider also exponential springs), we have tested our algorithm both with N = 2 and N = 4 (which
means, respectively, three and five coefficients in the Taylor expansion ).

The other design parameters are set as follow: the length of the integration window is T' = 0.5 s, the sam-
pling time is taken as Ts = 0.001 s, while the covariance matrix for the RLS is initialized at P(0) = 108- Ipngg.
The stiffness estimation results are given in Fig. These are also summarized in Tab. where the average of
the Mean Square Error (MSE) and Mean Square Relative Error Percentage (MSREP), see, e.g., |9], have been
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240

160

Stiffness [N/m]

80)

(a) Noisy torques and clean positions, (b) Noisy torques and positions, (c) Noisy torques and positions,
with N =2 with N =2 with N =4

Figure 3: Stiffness estimation results with different combinations of clean and noisy signals and with different
order of the Taylor expansion

computed over 100 simulations. Both MSE and MSREP were evaluated using only data after convergence of
the estimation process converged, that is betweent = 2 sand ¢t = 10 s. We can see that in every case and
with the same settings, the method performs satisfactorily.

operative conditions MSE MSREP
N=2 no noise 3.41072 || 5107°
N =2 noise on torques 19.3 4.81072
N =2 | noise on torques and positions 38.4 11071
N =4 noise on torques 39.9 871072
N =4 | noise on torques and positions 56.7 1.210°1

Table 2: Statistical evaluation of simulation results

3.5 Experimental results

We have tested the method on the Agonistic-Antagonistic VSA experimental device with exponential springs
shown in Fig.@and fully described in [12].

In the experiments, the order of the Taylor expansion was set to N = 9 and the length of the integration
window was T" = 0.5 s. The initialization of the covariance matrix for the RLS algorithm was set to P(0) =
10% - 3. The results of the stiffness estimation are shown in Fig. We used a nominal model for comparison,
although this not exact due to uncertainties in the parameters of the actuator. Therefore, we consider that the
acqed knowledge of the stiffness is reliable up to an error about 25 %, represented by the horizontal line in
Fig.[5b).
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Figure 4: The experimental setup on the left consists of an antagonistic VSA system with exponential springs,
realized using a linear spring forced to move on a suitable cam profile. Force sensors (strain gauges) are
mounted on the tendons connecting the springs to the link. Position sensors (encoders) are mounted on the
link and on two tendon pulleys coupled to the input levers. The collected experimental data measurements
are shown on the right: link position, deformations, and flexibility torques

3
S

3 =)
[

-y

T T T T T
—relative error |
\ ==:25% threshold

N

Stiffness [N/m]

Relative error [%]

<}

20 25

Time [s]

Time [s]

(a) total device stiffness (b) relative error

Figure 5: Experimental stiffness estimation (a) for the VSA of Fig. Eland its relative error (b) w.r.t. a nominal
model
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4 Signal-based stiffness estimation

We present next a stiffness estimation method in VSA-based systems that builds upon the residual approach
presented in [9]. A main feature of that approach was its applicability with or without the use of a joint torque
sensor. In addition, the method presented here does not use any knowledge about model parameters (i.e., we
relax also the need of knowing the inertia and damping of the motors). Therefore, the method is purely based
on input and output measurable signals. The results summarized in this section are detailed in the submitted
paper [8].

As done already in Sec. and in [9], we shall work on the motor side of an antagonistic VSA, where we can
estimate the stiffness of each transmission separately, and then compute the total stiffness of the device using
eqg. . Therefore, we shall drop in the following the index i = 1,2 in eq. , since the treatment is parallel
but identical for the two transmissions. Equivalently, we can just consider the motor equation

Integrating in time the motor equation gives

t t
B6 + Dy —/ Te(p)ds :/ ds. (36)
0 0

This representation removes the presence of the second time derivative of the motor position output, which
is difficult to numerically estimate in the presence of sensor noise. At this stage, the flexibility torque 7.(¢)
can be approximated by using a linear combination of m polynomial basis functions f;(¢),i =1...m:

Te(9) = Y aifi(9). (37)
i=1

We note that eq. plays a similar role as eq. in Sect. |3l Indeed, the two approximations are defined
on different, but differentially related quantities: the flexibility torque here, and the stiffness in the previous
section. On the other hand, the N-th order Taylor expansion is a particular case of , when f;(¢) = ¢' !
and m = N + 1. However, the present approximation is more flexible than the Taylor expansion, since we
can enforce a priori some desired structure to the solution. A typical example is when the flexibility torque is
known to behave in a skew-symmetric way around ¢ = 0, i.e., 7e(—¢) = —7c(¢). Then, only odd powers of
will be considered, f;(#) = ¢* !, with a saving on the total number of coefficients.
We can rewrite now eq. lb as

BO + Dyb — i o /t fi(¢)ds = /t rds. (38)
P 0 0

Assuming that only the input and output signals (7, 8, ¢, and 9) are known, we have to estimate the parameter
vectora = (v @y ... ) of the function fitting the flexible torque in , as well as the motor inertia
B and damping Dy. Thus, we would like to find the parameter vector § = (B Dy «) of dimension n =
(m 4+ 2) that minimizes the square of the residual error

2

( /O tTds—FT£> , (39)
FT:<9' 9 /Otfl(qﬁ)ds /Otfm(qﬁ)ds>.

In a discrete-time approach with T as the sampling time, we can consider a data set composed by a matrix
A that contains [ vectors F'y, = F(t), sampled at t = t;, = kT,

where

A=(F, Fy ... F; )", (40)
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and by the vector
T

t1 to tl
b= (/ Tds / Tds ... / Tds) . (41)
0 0 0

The parameter vector estimate that provides the least square error in a batch mode, namely considering
the whole data set, is obtained by pseudo-inversion of matrix A:

£ = A" (42)

From the estimated parameter vector é, we extract directly the estimated motor inertia B and motor damping
Dy. The estimated stiffness is obtained as

G = Z Qi 8];21)) = Z &;9i(9). (43)

Note that the functions g;(¢) are available analytically.

7

4.1 On-line robust implementation

The approach represented by egs. collects a batch of data and is evaluated offline: therefore, it as-
sumes that the parameter vector £ is constant over time. This assumption is not general enough. The motor
inertia B and damping Dy can be assumed constant during an experiment, although they still need to be
identified from time to time, and this generally requires disassembling the joint and disconnecting the flexible
transmissions. On the other hand, the parameter vector o cannot be considered constant during an experi-
ment, mainly for two reasons: i) the transmission characteristics slightly changes over time, due to variation
of temperature and stress caused by repetitive movements; ii) the approximation may not able to capture
well the flexibility torque characteristics in all its domain (except for simple or ad-hoc transmissions), and thus
the parameter « has to be slowly adapted when changing the working point of the device.

The use of a Recursive Least Squares (RLS) algorithm for on-line estimatation of the stiffness in a VSA device
was originally proposed in [6], and then used also in [7,9,29] as well as by the method presented in the previous
section. The principal drawback of the RLS algorithm is its sensitivity to poor excitation conditions. In such
cases, the estimation of the inverse correlation matrix (ATA)_1 loses the property of positive definiteness
and/or symmetry, causing a divergence in the estimation. A solution of this problem has been presented in [7]
at the cost of introducing an additional parameter ¢ that has to be carefully tuned.

We propose here to use a QR decomposition-based RLS (QR-RLS) algorithm that can address this instability
phenomena. Instead of working with the inverse correlation matrix of the input signal, the QR-RLS algorithm
performs QR decomposition directly on the correlation matrix of the input signal. Therefore, this algorithm
guarantees the property of positive definiteness and is more numerically stable than the standard RLS algo-
rithm.

For use in standard least squares minimization, the QR decomposition of the [ x n matrix A is given by

R
A=
Q < 00—y ) ; (44)

where Q is al x [ orthogonal matrix and R is an n X n upper triangular matrix. Applying the same unitary
matrix @ to the data vector b
_( P
() -

we obtain the n-dimensional vector p (a x represents the remaining unused values). The offline estimation 1i
is then obtained as
§=R'p. (46)
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In the on-line recursive algorithm, QR-RLS updates the matrix R, each time step k using the relation [28]

o (") - (o)
= , 47
Qk ( Fy, O1xn (47)
where A € [0, 1] is the so-called forgetting factor (tipically, larger than 0.95) used to discount older samples,
and thus increasing the estimator adaptability to non-constant parameters. Note that Q. isa (n+1) x (n+1)
matrix, and its dimension does not increase with new samples. The QR decomposition can be recursively

updated using a series of Givens rotations to zero out the non-zero elements on and below the diagonal due
to the added row F',. The orthogonal matrix Q) is used then to update p,, as

A A?k_l Dy
0

where an obvious recursive expression can be given also to the integral of the input torque on the left-hand
side. Finally, the on-line parameter estimation is

& = R, 'py, (49)

and the stiffness estimate at time ¢t = ¢, is obtained using <l with the current parameter vector &y.

It should be noted that an initialization phase of n samples is needed to set up a complete R,, matrix to
be used in the recursive estimation. The QR-RLS algorithm is not only robust with respect to poor excitation,
but it is also simple to tune, being the forgetting factor \ the only parameter to be chosen.

4.2 Results with ideal input-output signals

To show the effectiveness of the proposed method, we present simulations on the VSA-II device developed by
the University of Pisa [41]. The nonlinear flexibility torque of the two transmissions of the VSA-II is modeled
as

9B(¢p; .
Te,i((bi) = 2k2 ,8(@51) B<¢ )7 1= 17 27 (50)
¢;
where k; is the (constant) stiffness of the spring in the i-th transmission, and
B(;) = arcsin <C’i sin <¢;>> — %, 1=1,2, (51)

being C; > 1 a geometric parameter of the 4-bar mechanisms, and k; the stiffness of the internal spring. Due
to the antagonistic arrangement, the total flexibility torque acting on the link dynamics is given by the simple
sum in eq. @ For this reason, and with no loss of generality, we will present just the estimation results for a
single transmission of this device.

The VSA-Il dynamic model is given by egs. , and its nominal parameter data were presented in [41].
In particular, the nominal values for the motor parameters were set there to be By = 7.3 [Kg-m-mm] and
Dy n = 1 [N-mm-s/rad].

FInally, to simulate a non-constant characteristic for the flexible transmission. we have introduced a small
time drift to the spring stiffness value k1,

k1 = ki,n + 0.0005¢ [N-mm/rad],

where k1 y = 500 [N-mm/rad] is the nominal spring stiffness found in [41].
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Stiffness estimation methods that need the availability of motor data will use the above nominal data By
and Dy n. However, in the actual model used in the simulations we have taken values B4 and Dy 4 for the
motor parameters that are slightly off the nominal ones, mimicking the situation of a small (but realistic) error
in the off-line identification phase of the motor dynamics. The actual values considered (or, the ground truth
in the simulations) were B4 = 7.5 [Kg:m-mm] and Dy 4 = 0.9 [N-mm:-s/rad].

In the first set of simulations, ideal input and output signal have been considered. Thus, we assume that
the actual ¢, 6, and 6 are measured and no noise or approximation is introduced on the driving torques 7;. The
two motors apply the sinusoidal torques 71 (t) = 50 - sin 0.1zt and 72 (¢) = 50 - sin 27t [N-mm], respectively.
The simulation runs with a sampling time 75 = 1 ms, starting from ¢(0) = 6,(0) = 62(0) = 0 [rad] (lower
equilibrium configuration), moving under gravity (in the vertical plane) and with the system initially at rest. In
the fitting function , we used m = 7 polynomial terms f;(¢) = ¢°. The forgetting factor in the QR-RLS
algorithm has been set to A = (0.98.

Proposed method
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Figure 6: Stiffness estimation for one of the two transmissions of the VSA-II device, using three different meth-
ods: Actual stiffness o (solid, blue) and estimated & (dashed, green)

Figure@shows the results for the stiffness estimation obtained with the proposed method, compared to
a standard off-line Least Squares method and to the residual/RLS-based on-line estimator presented in [9].
It is rather evident that the newly proposed method outperforms the other two. In fact, the standard LS,
which considers the whole data set in the estimation of parameters assumed constant, is not able to track
the time variation of the transmission flexibility. On the other hand, the method proposed by Flacco et al. [9]
works with the assumed nominal motor parameters, and so an imperfect identification of these parameters
is reflected in an error on the estimated stiffness. Moreover, the present method returns also estimates of
the motor parameters that are very close to the actual ones, namely B = 7.5135 [Kg-m-mm] and 159 =
0.9148 [N-mm-s/rad].

To quantify the performance of stiffness estimation, we have considered the same two estimation error
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indices of Sect. namely the MSE and the (dimensionless) MSREP, both taken over [ t;, — l;;, > 0 samples:

~ 2 -
kzl: [(Uk Uk)] kzl: [< Tk > ]
—un , MSREP — —un
Ltin — lin Ltin — lin

MSE = -100. (52)

In the evaluation of these two indices, the first [;,, = 2000 samples have been discarded, corresponding to the
first 2 s of simulation data, so as to avoid the strong influence of an initial transient phase. The comparative
values of the indices are given in Tab.

] H Proposed method | Standard LS | Flacco et al. [9] ‘

MSE
. 102. 1.

N-mm2/rac?] 0.58 02.64 31.60

M?;J]EP 0.002 0.224 0.07

Table 3: Performance of stiffness estimation for the VSA-II

4.3 Dealing with signal noises

The presence of noise on input and output signals has to be taken into account in a realistic model of an actuator
with flexible transmission (or a VSA). For the torque input 7 we can assume a white Gaussian noise with zero
mean, while noise on the outputs ¢ and 8 will depend on the type of sensor we would like to consider. For
instance, white noise was assumed in [29], while the presence of noise due to quantization and discretization
of the encoders was considered in [9].

In [9]], a Modified Kinematic Kalman Filter (MKKF) was used to filter the encoder quantization noise. The
MKKEF is a causal filter that outputs a smoothed version of the input signal and a good estimation of its first
time derivative, when the SNR is adequate. On the other hand, the stiffness estimator based on operational
calculus introduced in [29] and its refined version using modulating functions presented in Sec.result both
in a series of non-causal FIR filters on signals that will be feeded in the subsequent RLS algorithm.

After some testing and analysis of these non-causal filtering methods, we realized that their success relies
on the validity of two operative conditions:

1. The same non-causal action is applied to all signals used in the RLS algorithm.
2. The characteristics of the flexible transmissions are quasi-constant (namely, can change only very slowly).

The FIR filtering action is applied to a moving window W of data, and the resulting value is assigned as output
to the center instant of this window. Thus, when working on-line, the filtered value has a time delay of T%.
Despite this delay, a very effective filtering action is achieved, because of the possibility of considering both
previous and successive data. Condition 1 implies that, by having the same time delay for all signals used in
the polynomial fitting, the estimate the parameter vector a will inherit the same time delay: namely, at step
k we would estimate ¢y, /2y From Condition 2 it follows that we can assume o, >~ &y, (w/2)-

With the above in mind, we propose here to introduce two separate filtering actions: a non-causal filter, so
as to obtain a robust estimation of the input/output signals to be used in the QR-RLS algorithm; and a causal
filter, in order to get a non-delayed smoothed value of ¢ to be used in eq. for the estimation of the current
stiffness.
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The filtered transmission deformation gZ;k can be obtained by two Kinematic Kalman Filters (KKF), one on
the motor position # and one on the link position ¢q. Let x be a generic angular position and z the associated
angular velocity. In order to estimate v(k) = 9 (t),) = (x(k) &(k))” with a KKF, we define

v = (o 7 )=+ wio (53
(k) = (1 0)y(k)+v(k), (54)

where z(k) is the noisy sampled measure (the encoder angle in our case), and (k) and v(k) are discrete-
time realizations of zero mean Gaussian noises having, respectively, covariance matrix (Q and variance R. In
the state equation , acceleration is not considered and p represents also the noise due to this absence. By
defining T' = (T%/2 T)T, the covariance matrix of p is Q = V, TT'", where V, is the variance associated to
the state. While the variance R of the measures is usually set to a constant value if the noise is Gaussian, in
the case of encoder quantization the Modified KKF proposed in [9] should be used instead.

A Savitzky-Golay (SG) non-causal filter [40] is applied to the data needed as inputs to the QR-RLS, namely ¢,
0, and 7. This digital filter is applied to a window W of measured data and is able to obtain their smoothing, by
increasing the signal-to-noise ratio without largely distorting the signal. This is achieved by fitting low-degree
polynomials to successive sub-sets of adjacent data points. When the data points are equally spaced, as in our
case, an analytical solution to the least squares fitting can be found, in the form of a single set of coefficients
that can be applied to all data sub-sets. The filter output provides smoothed estimates of the input signal (and
of derivatives of the smoothed signal) at the central point of each data sub-set. The QR-RLS applied on SG
filtered data results in a very robust estimation of the parameter vector &;,_(y/2), despite this comes at the
price of a time delay of T% seconds.

Assuming that conditions 1) and 2) are satisfied, stiffness estimation is obtained by putting together the
two filtered information:

m

Z (ik—%) gi(¢ ) (55)

4.4 Results with realistic signals

To show the effectiveness of the proposed approach and its robustness with respect to noise, we have com-
pared it with two state-of-the-art stiffness estimators.

The first one is the residual-based stiffness estimator [9]. We have simulated the same VSA-Il model under
the same operative and design conditions: encoder quantization, white noise on the motor torques, torque
input profiles, polynomials used for the fitting, etc. The same causal MKKF used in [9] was applied to estimate
qg, and a SG filter with a window of 1 second (W = 1000 samples at T, = 0.001 s) and a 20-th degree
polynomial for estimating the QR-RLS inputs. The forgetting factor was not considered (A = 1).

The total stiffness estimated with the present method shows a good quality, see Fig The result is qualita-
tively similar to the one obtained in [9], while a quantitative comparison can be done by looking at the indices
MSE and MSREP as defined in . Here, we obtained

MSE = 2.0919 [N-mm?/rad®] and MSREP = 0.5162 %,
while in [9] the result was
MSE = 92.2 [N-mm?/rad®] and MSREP = 0.046 %.

In addition, the new methpd provides also a good estimate of the motor parameters: Bl = 7.2360 and
By = 7.3022 [Kg-m-mm]; Dg 1 = 0.9731 and Dy 2 = 0.9980 [N-mm-s/rad].
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Figure 7: Estimation of the total stiffness of the VSA-II device, when modeled and controlled under the same
realistic conditions as in [9]: Actual stiffness o (solid, blue) and estimated & (dashed, green)

The second work taken into account is [29], where an antagonistic VSA with cubic flexibility torques has
been considered. Also in this case, we simulated the same model (B = 1074, Dy = 1.27, etc.), using the
same fitting polynomials and torque inputs, and under the same operative conditions (heavy white noise on
all signals). We used the KKF to estimate ¢ with V, = 10'° and R = 10%, and a SG filter with a window of 1
second (W = 1000) and a polynomial of the 20-th degree polynomial for estimating the QR-RLS inputs. The
forgetting factor was set againto A = 1.
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Figure 8: Stiffness estimation for the antagonistic VSA with cubic flexibility torques considered in [29]: Actual
stiffness o (solid, blue) and estimated & (dashed, green)

Estimation of the total stiffness is shown in Fig The numerical comparison of the estimation performance
indices yields for the present method
MSE = 1.2583 [N-mm?/rad®] and MSREP = 1.6936 %,
while in [29] the result was
MSE = 4.2 [N-mm?/rad?] and MSREP = 0.7 %.

In the present case, good estimates were found also for the a priori unknown motor parameters: 31 = 0.0023,
By = 7.1942 x 1074, Dy = 1.2843, and Dy 5 = 1.2706.

It is difficult to assess in general the superiority of one method over the other in terms of performance,
especially when just looking at a single or few simulations. Nonetheless, we can at least conclude that the
present method has the same stiffness estimation quality of state-of-the-art algorithms, while it does not rely
on the knowledge of motor parameters (actually, of any physical parameter).
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5 Damping estimation

We move next to another issue in the characterization of general Variable Impedance Actuators (VIA), namely
estimation of the total damping of the device. Indeed no sensor exists for measuring physical impedance, nor
for measuring its specific individual elements: stiffness and damping. As we have seen in the previous Sects.
and @ there is active on-going research focusing on the design and implementation of stiffness estimators for
VSA, as a follow-up of the works [7}/9,(12].

On the other hand, Variable Physical Damping Actuation (VPDA) has been lately investigated as a comple-
ment to compliant actuators [22]. In these actuators, the transmission damping can be regulated on demand.
However, no physical damping estimation algorithms exist at present. Similar to the use of stiffness estima-
tion, an estimation method of the device damping would be certainly useful for feedback control purposes, as
well as for diagnostics. We summarize here the method proposed in the submitetd paper [19].

5.1 Estimation of damping in VPDA

We present a damping estimation method that employs a robust RLS algorithm. The method is based only
on the measured dissipation torque and on the transmission deformation velocity, which is derived from the
measured deformation angle.

Consider a generic damping element embedded in a mechanical system, generating a dissipation torque
74 which depends in general on its displacement z and velocity Z, and on the control input u to the damping
element. The corresponding damping D > 0 of this element can be expressed as

. 0714(2, 2,u)
D(Z,Z,U) = #7 (56)
in which the dissipation torque is assumed to be an odd function with respect to the velocity, i.e.,
Ta(z, —2,u) = —14(2, 2, u). (57)
We can formulate an estimation problem in which the output signal, namely the (scalar) dissipation torque
74, is recursively estimated by a linear adaptive filter with n unknown coefficients w = (wq, ..., wn)T and
n input signals v = (vy, ... ,vn)T, which can be functions of other system readings. The input-output linear
model is then expressed at discrete-time instants t; = T, fori =1,2,..., by
7a(i) = o7 ()w* + £(0), (58)

where w* is the optimal solution in the mean squares sense and i is a zero-mean white Gaussian noise
sequence with variance o2.
The dissipation torque is then approximated by a polynomial function of the damper velocity Z that satisfies

the skew-symmetric condition . Therefore, the elements of the input signal vector are expressed by
vj:,é2j_1 forj=1,...,n. (59)

Similarly to the stiffness estimation case, the damping D can then be obtained from by analytical derivation
as

dv . r 1 \N\T
D=|—0\)) w=((i)) w, (60)
0z
where the elements of v’ are ‘
Vi = (25— 1) forj=1,...,n. (61)
Given m > n data points, the relation leads to the over-constrained linear system
74 =Vw* + &, (62)

where 74 = (74(1), ..., 7a(m))T, € = (£(1),...,&(m)T and V = (v(1),...,v(m))T € R™*n.
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RLS algorithm Given an estimate of coefficients w, the prediction error vector € € R™ is defined by

e =714 — Vw. (63)
Provided that V is full column rank, minimization of the cost function (LS problem)

J(w) = €le, (64)

is provided by the LS estimate
w = (VIV) V7, (65)

The on-line version of this solution leads to the standard RLS estimation algorithm (see, e.g., [38]), which is
reported here for the reader’s convenience:

e(i) = (i) — vT (i)W (i — 1) (66)

(i) = v1 (i)P(i — 1)v(i) (67)
P —1)v(i)

RO = (68)

w(i) = Wi — 1) + k(i)e(i) (69)

P(i) = (I - k(i)vT(i))P(i —1). (70)

where r is the modified Kalman residual covariance, k € R" is the modified Kalman gain vector, and P € R™*™
denotes the covariance matrix of the prediction error.

In the stiffness estimation method presented in [9], some instability problems due to the lack of persistent
excitation of the standard RLS algorithm were attenuated by using a modification introduced in [3]. In a similar

way, equations and can be replaced by

w(i) =w( — 1)+ a(i)k(i)e(i) (71)
and
P(i) = (1 — a(i)k(i)v” (1)) P(i — 1). (72)
where a(%) is a stability factor which is simply selected as in [9],
N 1+ 7(7)
Oé(Z) =C m, (73)

where ¢ > 0 is the stabilizing factor.

Damping estimation algorithm The final algorithm for estimating damping in VPDA is obtained by a suitable
modification of the RLS method to account for time-varying conditions.

It is well-known that an exponential forgetting factor can be incorporated as a weighting term in the RLS
algorithm, so as to attain faster convergence for time-varying systems, discounting older signals and relying
more on recent ones [17]]. One way to Include a forgetting factor, is to modify the cost function as

J(w) = €' R e, (74)
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where R = diag{\"~,..., A’} and A € (0, 1] is the forgetting factor [27].

A further method for enhancing the tracking performance of the RLS algorithm is by using a directional
forgetting scheme, in which past data are forgotten solely in those directions of the parameter space from
where new information comes [18]. The exponential and directional forgetting RLS algorithm, modified by
Bittanti [3] with the goal of achieving a better estimation performance for time-varying parameters, can be
described by incorporating a correction factor ¢ € [0,0.01] in the update of the covariance matrix as

o, Pli—=Dv(i)v"(3) .
P(z)_<| 5100 + 1(0) )P( 1) + 4l, (75)

where (i) is an auxiliary variable defined as

if (i) > 0,
, ifr(i)=0.

(76)
1

When A = 1, no forgetting effect is applied giving up a more prompt estimation response to time-varying
parameters. On the other hand, any decrease of this factor enhances the contribution of latest data on the
estimation process (which is good) but also the sensitivity to noise (which is bad) [4]. To cope with this situation,
one needs to resort to a variable forgetting factor through monitoring prediction error: when the prediction
error grows rapidly, the forgetting factor is progressively decreased down to a minimum value \,;,,; when the
prediction error is small, it is increased up to its maximum value, A = 1. Thus, a variable forgetting factor
scheme can be expressed as [45]

A(1) = Amin + (1 = Amin) 259, (77)
with -
L(i) = —round <p;(2()z)) : (78)

where p is a design parameter, the function round(.) rounds its argument to the nearest integer, and 7(i) is
the energy of an a priori estimation error defined for moderating the sensitivity of the forgetting factor to the
dynamic range of the error. The latter is updated as

77(@) - )\677(7; - 1) + 62(7;>7 (79)

being \. another constant forgetting factor.

The proposed algorithm is based on the use of a variable weighting factor — in the exponential and
directional forgetting RLS algorithm defined by — and —. The complete method is summarized
in Algorithm

5.2 Experimental results

Experiments were carried out to test the damping estimation algorithm on a VPDA device, the CompAct ac-
tuator developed at IIT, see [21]. Excitation of the system is performed through manual motion of the link,
while the motor is controlled to maintain a fixed position. To achieve a desired viscous damping D, in this
mechanical system, the normal force applied to the friction plates is modulated so as to emulate a viscous
damping behaviour. For ease of implementation, a value n = 2 was used in the approximation , resulting
in a linear-cubic polynomial.
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Algorithm 1 Damping estimation algorithm

Parameters: \., \pin, 0,0 and n
Initialization: 1(0), P(0),w(0) and i =0
while “systems is running” do

i=i+1

input 7,4(4), 2

v(i) = (2,...,220HT

(i) = 7a(i) — v" (w(i — 1)
(i) = Aen(i — 1) + €*(i)

L(i) = —found(pe (@)/n(@)
)\(7,) mm + (1 - Amzn) : 2L(l)
r(d o7 (1)P(i — 1)v(i)

i) > 0 then

Bi) = Ai) —

g

1—X(4)
()

output 74(7), D(i)

end while
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Figure 9: Variation in dissipation torque vs. relative velocity of friction plates
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Figure 10: Time evolution of the clutch normal force and of the relative velocity of clutch plates

Constant damping The first experiment consists in estimating a desired constant viscous damping behaviour,
as specified by Dy = 3 [Nm s/rad]. Figure|§|shows the variation in dissipation torque versus the change in
relative velocity of the friction plates. Since a constant damping was regulated, based on the slope of
the trend-line of this graph provides a value D = 3.02 Nms/rad with Normalized Root Mean Squared Error
(NRMSE) of 2.74%, representing a suitable approximation of the real damping in the system.

The estimation of the constant damping using the proposed approach provided a NRMSE of 2.89%, which
is quite close to the previous value. The time evolution of the friction force applied by the clutch plates and
the relative velocity of the plates are shown in Fig. The behaviour of the estimated torque in comparison to
the measured one is reported in Fig. together with the normalized error between the two. The normalized
error is below 1%, showing the good accuracy of the estimation.

Figure represents the evolution in time of the coefficients w; (weighting the linear velocity term) and
wo (weighting the cubic velocity term) of the approximating polynomial, the desired constant damping, the
(slightly oscillatory) estimated one, and the percentage error between the two. The last plot shows that this
error reaches a maximum of about 5%, being mostly due to unmodelled friction around the zero-velocity area
(the effect of stiction on the dissipation torque around the origin can also be observed in Fig.@).
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Figure 11: Time evolution of measured (solid, blue) and estimated (dashed, red) dissipation torque [top], and
the normalized error between the two [bottom]
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Figure 12: Time evolution of the two coefficients w; (blue) and ws (red) in the polynomial approximation [top],
constant desired (blue) and estimated (red) damping [center], and the error between the two [bottom]

WSAPHAW Page 25 of



ICT-287513 SAPHARI Deliverable D3.2.1

Force[N]

0 10 20 30 40

. Mtk il il "“““Ii.

Torque[N.m]
o

-2 .I ”” v ll ““',
AT e gl [ 1

0 10 20 30 40

NE[%)]

0 10 20 30 40
Time[s]

Figure 13: Time evolution of the clutch normal force [top], measured (blue, solid) and estimated (red, dashed)
dissipation torques [center] and the normalized error between the two [bottom]

Time-varying damping In this second experiment, the normal force applied on the friction plates is modu-
lated so as to produce a desired time-varying damping, as specified by by

Dy(t) = 14 1.45sin?(0.057 t) 4 1.7sin?(0.17 t). (80)

The results obtained using the damping estimation algorithm provide in this case a value NRMSE of 3.17%.
Figure shows the force applied to friction plates, the measured and estimated torque, in addition to the
corresponding normalized error between measured and estimated torques. The error in this experiment is
also below 1% validating the accuracy of estimation when compared to the actual value.

Figure |14| collects the time evolutions of all the relevant quantities. It can be seen that error between
reference and estimated values varies from less than 10% in the domain of high damping to about 30% for
damping of lower magnitudes. This is comparable with the accuracy of the identified friction model in response
to low and high forces.

6 Stabilizing cyclic motions in VSA systems

Intrinsic elasticities in biological and robotic multi-body systems enable the execution of highly dynamic and
complex motions, such as hitting and throwing, or walking and running. The compliant actuator behavior
improves the mechanism robustness during rigid contacts with the environment and increases performance
and energy efficiency. However, the generation of effective and efficient motions is not trivial.

In this section, we aim at robustly controlling periodic motions for robotic systems with Variable Stiffness
Actuation (VSA) [46}|1}[11]. The idea is to exploit the natural dynamics of these systems and to control them so
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Figure 14: Time evolution of the two coefficients wy (blue, solid) and ws (red, dashed) in the polynomial ap-
proximation [top], reference (blue, solid) and estimated (red, dashed) damping [center], and the error between
the two [bottom]

that they are able to robustly handle external disturbances (such as robot-ground contacts) in a similar way as
their biological archetype. The underlying assumption is that these systems feature intrinsically some internal
nonlinear oscillation modes, which correspond to the mentioned dynamic motion patterns. The goal is to find
appropriate control strategies, that first enables to identify and then will excite one of these oscillation modes.
To this end, we propose two different control approaches.

The first approach, detailed in Sect., achieves a desired dynamical behavior by means of a control law
and then decouples the closed-loop dynamics in terms of modal coordinates, constraining the motion of the
robot to some invariant manifold of its state space. Using these dynamic constraints, we will be able to stabilize
limit cycles along one of the resulting oscillation modes, which is as close as possible to the natural dynamics
of the plant.

The second approach, presented in Sect., extends the single-input single-output controller introduced
in [25] to the multi-input multi-output case. This is achieved by an adaptive part which converges to a coor-
dinate transformation of the dominant oscillation mode of the robotic plant. The coordinate transformation
is then used to modally distribute the energy input over the joints, thereby increasing effectiveness in the
excitation of limit cycles.

6.1 Modal decoupling and limit cycle control

The concept of modal decoupling is best introduced by considering first the dynamics of a rigid robot manip-
ulator, i.e.,

M(q)g+C(q,q4)q +g(q) = . (81)

As a matter of fact, this model mimics closely the link dynamics @ of a multi-dof VSA-driven robot. The only
apparent difference is in the right-hand side, where the flexibility torques 7. of the VSA case are replaced here
by the commanded motor torques 7 of the rigid case.

Starting then with the robot dynamics , assume that the following PD control law with additional terms
to compensate for Coriolis/centrifugal and gravity effects is applied

T=uy+C(q,9)q + g(q) + M(q)i, — Da(q)q — Ka(q)q, (82)
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where g = g — q is the tracking error with respect to a desired trajectory q,(t), D4(q) and K 4(q) are
symmetric, positive definite (and possibly diagonal) damping and stiffness matrices, and we have introduced
an auxiliary control input u, for later use. Note that the impedance controller <| when u, = 0, is able to
asymptotically track any desired smooth trajectory g,(t). Substituting eq. in l) leads to the closed-loop
error dynamics

M (q)q + Dy(q)q + K 4(q)q = uq, (83)

To derive the decoupling coordinate transformation for system , we invoke a result on the generalized
eigenvalue problem known from matrix algebra, see [15] and [35].

Lemma 1 Given a symmetric and positive definite matrix A € R™*"™ and a symmetric matrix B € R™*", there
exist a non-singular matrix W € R™*" and a diagonal matrix Byy € R™ ™ such that W~ TW ! = A and
W TByW™! =B.

If we now apply Lemma to A = M(q) and B £ K 4(q), we obtain the transformation
z=Wa)q (84)

which maps the joint error coordinates q to the desired modal coordinates z. In order to rewrite system 1i
in modal coordinates, we use the inverse of 1i namely

q=Wi(q)z. (85)

Based on Lemma the desired damping matrix should be designed in modal coordinates, namely as

Dq(q) = W "(q) (2dieg {&:v/Xi(a) }) W () (86)
Here, £ > 0 are constant, normalized modal damping coefficients, fori =1, ..., n.

Substituting in eq. , we obtain the modal dynamics

%+ 2diag {&m} %+ diag{\i(q)} z = W(q) (ug — ) (87)
being
I = W'(q) M(q)W(q) (88)
diag{\i(q)} = W'(q) Ka(q) W(q) (89)
v = (M(@W(q) + Du(@)W(q)) = +2M(q)W (q). (90)

Using in the control law
ug =W (q)u. +7, (91)
being u, the new control input, we obtain n subsystems in terms of the modal coordinates z:
%+ 2 diag {gi\/W} 2 + diag {Ni(q)) = = u. (92)

To prove stability of the homogeneous closed-loop dynamics , we consider a positive definite Lyapunov
function candidate V; for each decoupled subsystem, and deduce stability if each time derivative V; is negative
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definite, i.e., V; > 0,Vi = V = 3, Vi > 0,and V; < 0,Vi = V = 3, V; < 0,¥(2T 2T)T # 0). Thus,
consider the ¢-th decoupled subsystem

Zi +2&\/ /\i(q)é’i —+ /\i(q)zi = 0. (93)
With the state vector x; = (z; z"i)T, a positive definite Lyapunov function candidate is given by
1 co  c1/2
Vi(z;) = -] xi, (94)
2 01/2 1

where c1, ¢o are positive constants and ¢y > c%/4. The derivative of the Lyapunov function
. 1
Vi(zi,q) = 5 x] H;(\i(q))z;, (95)
will be negative definite, provided that the matrix
cihi(q@) i(q) +c1&iv/Ai(q) — 2 )

symm 4/ Ni(q) — e

is positive definite. We can conclude that the equilibrium point ; = 0 of is asymptotically stable, if the
leading principal minors of H;(\;(q)) are strictly positive (as functions of g, Vg € R"), i.e.,

c1hi(q) > 0, (97)
det (H;(Ai(q))) > 0. (98)

Hi(\i(q)) = ( (96)

The proof of the existence of suitable constants cq, co, and a comprehensive analysis of the corresponding
stability region are provided in [23].

In the following, we show how to produce an asymptotically stable limit cycle for the generic k-th decou-
pled system in . Setting &, = 0 and dividing by A;(¢) > 0 (positivity holds V), the system becomes

1
—Z = —— 99
with state (2 z’k)T € R2. Similarly to what was done in [10], consider the scalar function
1 1
H(t,zp, %) = —— 42+ -22 >0 100
(7zk72k) 2)\k(t) Zk+2zk_ 9 ( )
with time derivative along the trajectories of
J . 1 . )\k(t) .2
H(t = — — . 101
( ,Zk,Zk) )\k(t) Uz, %k 2Ak(t)2 2k ( )
Choose the input as
~ D Ae(t) .
Uz, = A (1) (kVH (t, 2k 2k) 21 + 2)%82 Z;?) ; (102)

where ky > 0, H (t, 2k, 2x) = H (t, 2, 2) — Hg and Hg > 0, such that the derivative of H (¢, z, Zx) results
in

H (t, 2, %) = —ky H (t, 2, 2) 32. (103)

The system , unlike the one considered in [10], is non-autonomous and so we cannot apply directly La
Salle’s theorem. Nevertheless, with a similar argument, we can prove that it has an asymptotically stable limit
cycle Q = {z, 2 | H (t, 2, 2x) = Hg}. It remains to show stability and attractiveness of this limit cycle.
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Uniform stability Choosing as Lyapunov function the continuously differentiable function

V (t, 2k, 28) = %ﬁ(t, 2k 21)2, (104)

with

« V(5,Q) =0

o 51 (21, 2k) <V (b 2k, 2k) < S2 (28, 21)

o V(t 2, 26) = —kv H (t, 21, 51)° 262 < 0
Vt > 0andV (zx, ) € R?, and where

2
1 (o0 26) = (%:ng +id- Hd>

1/ 1 1 2
,min

are positive definite functions on R?, we can conclude that €2 is uniformly stable.

Attractiveness Attractiveness is proven using Barbalat’s lemma (see, e.g., [43]]). We have already shown that
V (t, z, 2% ) is bounded from below and that V' (¢, zi, 2% ) is negative semidefinite. In order to apply Barbalat’s
lemma, it remains only to show that V' (¢, z, 2% ) is bounded. This follows from

Vv (t, 2k Zk) = —Qka{ (t, 2k Zk)2 (kvé’k + zkzk) y

which is bounded since l@) is stable. So, we conclude that lim; ... V (¢, 21, ) = 0. Let B, (Q) be a neigh-
bourhood of €2, such that (z;, = 0, 2 = 0) ¢ B, (Q2). Since 2 is stable, we can choose the initial condition such
that the solution remains always in B, (£2). Moreover, we have shown that either Z;, — 0 or H (¢, zx, 2) —
Hjast — oo, but since the system cannot converge to (zj # 0, 2 = 0) and (z; = 0, 2, = 0) ¢ B () then
we conclude that the solution can only converge to Q = {zy, 2 | H (¢, zx, 2x) = Hg}.

The last step of our application is the extension to the case of VSA-driven multi-dof robots, as modeled by
egs. . We will do so by deriving a controller that is able to track any desired flexibility torque T 4, using
the basic concept of decoupling the flexible joint torque dynamics from the dynamics of the joint position.
The approach was proposed in [34] for the case of robots with constant joint stiffness, but allows a rather
straightforward extension to the VSA case.

Consider the inversion of the flexibility torque function 1) in

0 — q= 'lp_l(Te)'

Rearranging and differentiating twice w.r.t. time yields

.o (Te) - o) L d (o (TR
0—q+877_67'6, 0—q+877_67'6+$ 87’7'6 Te- (105)
Substituting the acceleration 6 in the motor equation leads to
V7o) . d (0T . B )
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If a desired flexibility torque profile 7. 4(t) has to be tracked at the joints, then the control input 7 € R™ will
be chosen as
. d (o YT ) oy Y(re) .. )
T=T.q+Bqg+ B — L(e) Te—i-BL(e)(Ted-l-DTeT-i-KTGT), (107)
’ dt OTe OTe ’
where e, = 7.4 — T, is the control error and K, D, are symmetric and positive definite gain matrices.
Note that the link accelerationg required in (107) can be obtained from @, since the flexiblity torques 7. can
be measured by a joint torque sensor. The control error dynamics becomes

-1 -1
er+ DTéT + <KT + <a'¢a(7—€)> Bl) e =0, (108)
Te

showing that asymptotical stability of e can be achieved by proper tuning of the control gains.
As a result, the modal limit cycle dynamics can be implemented for the VSA system — by simply

plugging as 7. 4 in 1i the right hand-side of eq. , in which lb and 1i are also used.

6.2 Modal adaptive bang-bang control

Our goal here is to control periodic motions of the link position coordinates ¢ € R™ in a VIA-driven robot using
the bang-bang control introduced in [25]). Since that controller accounts only for scalar quantities, we seek a
transformation such that the motion g(¢) can be represented by a single coordinate, for instance, y1(t). The
basic idea can be explained in the context of differential geometry (see also the sketch in Fig..

Consider the time series of joint positions q(t) representing the motion of the multi-joint robot, where
g € @ C R™ are coordinates of a manifold (). Assume that we can represent the trajectory q(t) on a lower
dimensional manifold Y, with coordinates y € Y C RP, with p < n (in particular, for the present case of
bang-bang control, we will require p = 1). Assume further that this reduction mapping

y=F(qW) (109)
can be parameterized by constant weights W, and that the inverse mapping
q=G(y, W) (110)

also exists. Then, similar to what done in [20], we can define an error function for the composition of the
reduction mapping and of its inverse (also called the auto-associative mapping)

S = lla(t) — (G o F) (q(t), W)|*. (111)

For a perfect reconstruction mapping, the sum of error functions evaluated at each point of the trajectory
q(t) must be identically zero. In general, this leads to a nonlinear optimization problem, where the matrix of
weights %% represents the optimal solution.

To clarify the meaning of the reduction mapping 1i in a simple case, consider a linear, second-order and
non-dissipative mechanical system in free evolution

Mg+ Kq=0, (112)

where M, K € R™*"™ are constant, symmetric, and positive definite matrices. Using the eigenvectors w; €
R"™ of the matri A = K Y2MK~1/2, where 1, are normalized so that ﬁ:;fpfuj = 0;j (the Kronecker
delta), the motion of the system (112) can be expressed as

q(t) = wiy1(t) + waya(t) + ... + Wayn(t), (113)

1The matrix A results from the coordinate transformation q = K‘l/Qz, i.e.,, Z + Az = 0, with A being still symmetric and

positive definite. The eigenvectors of A are related to the generalized eigenvectors of K, M [16, chap. 4.5].
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(a) The basic idea of the modal (b) Local approximation of the
transformation modal transformation

Figure 15: Manifold interpretation of modal transformations

where y;(t) = a; sin(w;t — ¢;) are time modulations of the eigenmodes corresponding to motions along w;.
Hereby, a; are amplitudes, w; eigenfrequencies and ¢; phase angles. From (113) it can be seen that

q=> wiy, (114)
7

where w; € R" are parameters of the mappings |i and g € R" and y; € R represent the instantaneous
values of the trajectory q(t) and y;(t), respectively. Due to orthogonality of w;, the modal reduction mapping
has the form

Y = wy q. (115)

With the above in mind, we can derive an adaptive law for the linear system , so as to learn the true
parameters w; of the mapping under the assumption of unknown (or uncertain) K and M. Assume
that we measure a new value of the actual joint position g(k) = q(tx) (with t; = kT}) at each discrete-time
sample k. Consider further the error function

2

1
S=7 , (116)

a(k) = > _wiwiq(k)

which represents the squared distance between the input g(k) and the auto-associative mapping wiw?q(k)

obtained composing the reduction mapping 1i and the inverse mapping (114). Then, the gradient descent

rule for minimizing S'is

95(q(k), wi(k — 1))
8wi

i (k) = wi(k — 1) — , (117)

where v > 0 determines the convergence rate and
05(q(k), wi(k — 1))

8wi
The algorithm l l minimizes the error function (116) recursively, and provides a new guess w; € R"

at each sample k (note that y;(k) = w!(k — 1) q(k)). However, since the algorithm does not enforce the
needed orthonormality of the weights w;, we incorporate in the iteration a Gram-Schmidt orthogonalization

(see, e.g., chap. 0.6]) from w; (k) to w; (k)

w;(k) = wi(k) — Y w](k— 1) di(k)w;(k — 1).
7<i

= —y;(k) (q(k) — yi(k)w;(k — 1)) (118)
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and a successive normalization from w; (k) to the final output w; (k) at step k

wi(k) = (w? (k) w, (k)" wi(k).

7

Assuming that v < 1 and neglecting terms of order O(+2), we obtain the learning rule proposed by [33]:

wi(k) = wi(k — 1) + ’yyi(k:)(q(k:) — yi(kywilk — 1) =23 y;(k)w; (k - 1)). (119)
j<i
The p dominant eigenvectors w, ..., w,, of the data covariance matrix C' = E{QQT} (of expected val-

ues), where Q@ = (q(1),...,q(k)) € R"** represent asymptotically stable fixed-points of the difference
equation (for a proof, see [32}[39]). For the linear mechanical system , the eigenvectors wy, ..., w,
of the data covariance matrix C are related to the oscillation modes, i.e., w; are eigenvectors of the matrix A
that are represented in the particular motion considered. Moreover, in the presence of damping, the eigen-
vectors of matrix C' approximate the eigenvectors of the resonant modes (for more details, see [5]).

To move out of the simple linear mechanical system and consider the full nonlinear dynamics of
the links of a multi-dof robot system (either with rigid joints and conventional actuation, or driven by VSA
units —the treatment is similar, as shown in Sec. @, the notion of eigenmodes for linear systems might be
replaced by so-called nonlinear normal modes [42]. For the present approach, we assume that the dominant
mode is synchronous in amplitudes (i.e., the oscillations of the joints are in phase), so that the motion along this
mode can be represented by a single curvilinear coordinate. Therefore, when the algorithm described by
converges sufficiently fast, the weight vector w; (k) locally approximates the instantaneous linearization of
the nonlinear normal mode. This is sketched in Fig. @ Finally, it is worth mentioning that the order of
the weight vectors w;(k) depend on the particular motion g(k), which the only information source of the
adaptation algorithm. The first weight vector w1 corresponds to the most dominant principal component of
the trajectory q(k), i.e., to the eigenvalue of the matrix C' with the largest magnitude.

With the above tools and analysis in mind, assume that we want to excite periodic motions around a ref-
erence motor position 8y € R™. Consider the PD control

where Kp, Kp € R™*™ are symmetric and positive definite control gain matrices, and 8; € R™ is the
desired motor position for the VSA robot system @ , which is taken here as a tunable control input. Then,
using wy € R™ provided by the adaptation algorithm 1) we can compute the following bang-bang control
in the direction of the first mode:
sign (7,) 0., if|7.| > ¢ .
A0, (7,) :{ (72) 0z, if|7al > e (121)

0, otherwise.

Herein,

o (0U(6,9)\" [0U(6.9)\"
et (L) (0| e a2

is the generalized force acting in the direction of the first mode, the positive scalar €., is the corresponding
threshold, and 6, € R is the modal switching amplitude. Finally, the control input 8 in 1i will be adapted
as

04 =00+ A6. (123)

In this way, we can interpret Af.(7,) € R as a tangent vector to the modal manifold which transforms with
the Jacobian w; of the inverse reduction mapping (114), i.e., A8 = w1 A0, (7).
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6.3 Experimental results

The modal decoupling control presented in Sect.was tested on the first four VSA joints of the DLR Hand Arm
System. The limit cycle controller has been applied either to excite the first or the second mode. Figure
shows pairs of plots in the (position/ velocity) phase plane of the modal and joint motion in four different
cases. In Fig.a-b), the joint stiffness was preset at the minimum values, while in (c-d) the joint stiffness was
increased to half of its maximum feasible value. In both cases, only the first mode motion (blue lines in (a) and
(c)) approaches asymptotically the limit cycle, while the remaining modes stay around the origin. In terms of
joint motion, the first and the fourth link are those mainly involved (plots blue and magenta in (b) and (d)). In
Fig. e), the second mode undergoes cyclic motion (in green) and this involves the motion of all four joints
(f). In order to induce all these limit cycle motions, the controlled robot arm was manually pushed from an
initial configuration (different for the first and second modes). Finally, the attractive behavior of the limit cycle
can be observed in Fig. and respectively on the modal and joint motion. In this case the robot
end-effector has been stopped and then released by hand. After this disturbance, the motion converges back

to the limit cycle.
[} @ [}

o=

(a) First mode motion (b) Joint motion (c) First mode motion (d) Joint motion
(e) Second mode motion (f) Joint motion (g) Modal motion (h) Joint motion

Figure 16: Phase plots of modal and joint motion in the experimental validation of the modal limit cycle con-
troller for a VSA robotic arm (the first four joints of the DLR Hand Arm System)

The modal adaptive bang-bang control of Sect. was tested in a hitting experiment with the DLR Hand
Arm System, see Fig. As shown in Fig. the controller is able to stabilize with this control law a
periodic hitting robot motion in the presence of multiple repeated environmental contacts. After the initial
disturbance, motion in the y and z directions approaches a periodic steady state within one oscillation cycle.

Finally, to illustrate the adaptability of the control approach, we have performed also some simulations for
a robotic system with hybrid dynamics and compliance. For the planar legged robot driven by Serial Elastic Ac-
tuators (SEA) shown in Fig. an open-loop sinusoidal excitation and the modal adaptive feedback control
are compared in Fig. In the latter case, the frequency of the vertical oscillation of the trunk converges
to the frequency of the task. More simulations are provided in [24].
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Figure 17: Bang-bang modal adaptive control in a hitting experiment with the DLR Hand Arm System
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(a) Technical sketch of a planar system with two legs
(f = front, r = rear)
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(b) Feedforward sinusoidal excitation (left) and modal adaptive bang-bang control (right)
for cyclic hopping motion

Figure 18: Simulation results for a planar legged system with compliant actuation
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7 Optimal control for maximizing link velocity of visco-elastic joints

During the first two years of the project, several results have been obtained by the partners on the optimal
control of single-dof and multi-dof robot systems, including various form of compliance at the joints (constant
elasticity, SEA, VSA, and so on) and considering different objective functions. Early results were summarized
already in the form of a milestone (MS3 Optimal control of modular VSA manipulators) reached at the end of
month 12, while further developments have been presented in scientific papers at conferences and submitted
to journals. It is then appropriate to conclude the present document on the control of compliant robots with
just one of the latest obtained technical results on this subject.

Two major properties of compliant actuators are the ability to absorb shocks, and to store potential energy
in the elastic elements. The latter can be used to realize explosive motions, as those observed in humans [14].
Concentrating on this second advantage of purely elastic joints, we have investigated the role and influence of
mechanical damping in visco-elastic joints on the optimal control solution. In particular, we refer to the simple
benchmark shown in Fig. . and to the problem of reaching with this 1-dof system the maximum possible
link velocity at a given terminal time ¢ .

Dy
Tm 4‘
— B J M
’\/\f}/\/L
J
}_) / }_) q

Figure 19: 1-dof visco-elastic Joint

Actuation models of increasing complexity have been considered with the purpose of getting more insight
about the influence of a constant joint damping on the optimal control policy for explosive motion tasks. In
order to obtain analytical results, we started first by analysing a simple velocity-controlled motor model. The
problem of maximizing the link velocity can be formulated mathematically as an Optimal Control problem
having just a terminal cost component to mbe minimized (at time ¢ )

J = —q(ty). (124)

A solution to this problem had already been found in the case of undamped elastic joints: The optimal con-
trol strategy is bang-bang and periodic with the system’s eigenfrequency w = /K ;/M. By addressing the
modified problem for visco-elastic joints we wanted to reveal the effect of damping on the structure of this
nominal optimal strategy and to see whether the maximum link velocity would remain bounded by letting ¢ ¢
go to infinity in the cost functional .

Pontryagin’s Maximum Principle has been the main mathematical tool used to obtain analytically optimal
solutions for simple motor models. On the other hand, for more complex models and cases, we resorted
to the numerical optimization software GPOPS. Whenever possible, numerical results were also validated in
comparison with analytical results. The theoretical findings show that the optimal control for under-damped
joints is again periodic, but is now tuned with the system’s damped eigenfrequency wy = wv/1 — D?, where
D isthe damping ratio. Increasing D leads to an increased period for the optimal control law, but only until the
damping ratio is below unity. For critically damped and over-damped joints, the optimal control is no longer
periodic and must switch once when a sufficiently large final time is allowed.

Having determined this optimal strategy, we looked at the behavior of the maximum link velocity ¢,qz(tf)
as ty increases. While increasing the final time always increases the final achieved link velocity, this increase
is bounded and a maximum bound on the link velocity can be found. Figureillustrates the dependence of
this bound by plotting the performance index e(n, D), defined as the ratio of the maximum link velocity ¢,z
to the maximum motor velocity émax, in terms damping ratios D, as well as for different motor switchings n.
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Figure 21: Optimal control results for a visco-elastic joint with different motor models

For the velocity-controlled model, we could also show theoretically that a direct relation exists between
the system co-states and the obtained link velocity. This is given by the integral

q(ty) = — /0 "ot () 0(e) de, (125)

where o* is the switching function, which is expressed as a linear combination of the system co-states. One
advantage of having a valid formula like is the possibility of analyzing the influence of motor velocity
on the achieved link velocity along the whole trajectory. Remarkably, the above formula holds for any of the
chosen motor models. We can thus interpret the control strategies computed numerically for more complex
motor models having acceleration or torque as input by using , and in particular the switching function
o*, see Figure Further analytical and numerical results are contained in the submitted paper [36].
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