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ExecuƟve Summary

This deliverable of work package WP3 presents a summary of the most recent research results on esƟma-
Ɵon and control of robots with Variable Impedance ActuaƟon (VIA) obtained by the partners of SAPHARI and
developed during the first two years of the project.

The possibility of exploiƟng the characterisƟcs of such devices in planning and feedback control requires the
knowledge of the actual impedance of the robot joints. However, no sensor is available for the direct measure
of such physical quanƟƟes. Therefore, in the first part of the document, three compeƟƟve approaches are
presented for esƟmaƟng the sƟffness or damping of a single VIA joint. Emphasis is given to methods that
are non-invasive (i.e., which can be used without modifying the device), require less sensing informaƟon, can
work efficiently on line (so as to capture the Ɵme-varying nature of the problem), and are robust with respect
to measurement or input noise and uncertainty in model parameters.

Experimental validaƟon has beenmade on single-dof VSA and VDA units, but extension tomulƟ-dof robots
is rather straighƞorward, thanks to the decentralized design of the proposed methods. In the next period, we
are planning to performalso a quanƟtaƟve comparison of the performanceof these esƟmaƟonmethods, which
now consƟtute the state-of-the-art in the field, on the qbmove VSA systems developed within SAPHARI and
recently distributed to the involved partners.

The second part of the document focuses on control laws that take advantage of the variable compliance
(and nonlinear resonant modes) of the robot joints for generaƟng desired cyclic moƟons. The underlying idea
is to use the natural dynamics of VIA robots to induce, by means of a suitable aƩracƟve control acƟon, a task-
oriented periodic moƟon that is also very energy efficient. This can be used for highly dynamic and complex
moƟons, such as hiƫng and throwing (with the robot upper body), or walking and running (with the lower
limbs). RepresentaƟve experimental results have been already obtained on the DLR Hand Arm System.

A final secƟon is devoted to an opƟmal control problem for visco-elasƟc compliant joints, where analyƟcal
and numerical tools are used so as to achieve the largest possible link velocity in a given Ɵme. This is another
example of the intensive research acƟvity of SAPHARI on the opƟmizaƟon of dynamic performance of various
classes of compliantly actuated robots, as already presented in milestoneMS3 OpƟmal control of modular VSA
manipulators reached @M12 and in the published scienƟfic papers.

We also menƟon that acƟviƟes within the specific task T3.2 of WP3 will conƟnue as planned unƟl the end
of the project (the next deliverable D3.2.2 Experimental validaƟon of control laws for mulƟ-dof VIA manipu-
lators is due @M48), so that the esƟmaƟon and control results summarized in this document can be further
developed, integrated, tested, and refined through pracƟcal use on different plaƞorms.
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1 IntroducƟon

In this report we consider some esƟmaƟon and control problems that arise in robots using Variable Impedance
ActuaƟon (VIA), and more specifically actuators that allow a variable sƟffness (VSA) or variable physical damp-
ing (VDPA).

The need for esƟmaƟng the actual sƟffness and/or damping of such actuator/transmission units is due to
the fact that there is no sensor available to measure directly these quanƟƟes. In turn, accurate values are
needed for the best performance of model-based opƟmal/feedforward commands or for the implementaƟon
of advanced feedback laws, e.g., those guaranteeing simultaneous and decoupled moƟon-sƟffness control.

The strong dynamic interplay between potenƟal energy (due to transmission deflecƟon) and kineƟc en-
ergy in robots with constant or variable compliant joints poses new addiƟonal challenges beside the tradi-
Ɵonal control tasks of accurate trajectory tracking or stable force interacƟon. Suitable opƟmal control acƟons
can be designed in order to obtain extremely large moƟon speeds and/or impulsive forces or, conversely, for
prevenƟng and excessive (unsafe) energy accumulaƟon. It is also possible to exploit the natural vibraƟonal
dynamics of these nonlinear compliant mechanical systems to realize cyclic or periodic tasks in a robust and
energy-efficient way.

AŌer recalling in Sec.2 the basic dynamic modeling for roboƟc devices with VSA, the two SecƟons 3 and 4
present the latest and most robust versions of the sƟffness esƟmaƟon algorithms developed by UNIPI and
UNIROMA1, respecƟvely, for a single-dof antagonisƟc VSA unit. Both approaches work on the motor side of
the compliant transmission units, and can thus be immediately generalized to the mulƟ-dof case. Moreover,
they do not require necessarily a joint torque sensor. They differ in the processing of measured data, which
is done in order to avoid differenƟaƟon of noisy measures, in the way measurements are filtered, and in the
actual implementaƟon of the following Recursive Least Squares (RLS) method.

SecƟon 5 presents the extension by IIT of a similar approach for the esƟmaƟon of damping in a VDPA.
Special care is used to address the Ɵme-varying nature of fricƟonal phenomena (e.g., in the used clutch).

Two control approaches for generaƟng cyclic moƟons in compliant robots are proposed by DLR in Sect. 6.
The first method exactly decouples the parƟally feedback linearized dynamics of the robot using complete
model informaƟon, and yields then a globally aƩracƟve limit cycle along a desired oscillaƟonmode. The second
method directly excites the natural dominant oscillaƟon mode of the compliant robot, requiring no model
knowledge but only measurements of the states of the actuated joints.

Finally, the short SecƟon 7 is devoted to an opƟmal control problem in which the role of damping is invesƟ-
gated, when trying to maximize in a finite Ɵme window the velocity of a link driven by a visco-elasƟc joint. This
result by DLR complements the previous acƟviƟes of this partner and of UNIPI on the use of opƟmal control
tools and methods for opƟmizing the dynamic performance of VIA-based robots.

2 Dynamic modeling

Flexible transmissions are characterized by elasƟc elements that allow a deformaƟon (or displacement) ϕ be-
tween the motor angle θ and the link angle q (ϕ = q − θ). A smooth potenƟal funcƟon Ue(ϕ) ≥ 0 is as-
sociated to the deformaƟon ϕ, with Ue(ϕ) = 0 iff ϕ = 0. The flexibility torque across the transmission is
τe(ϕ) = ∂Ue(ϕ)/∂ϕ. The sƟffness of the transmission is defined as the variaƟon rate of the flexibility torque
τe(ϕ) w.r.t. the deformaƟon ϕ,

σ(ϕ) =
∂τe(ϕ)
∂q

=
∂τe(ϕ)
∂ϕ

> 0. (1)

For a single motor driving a rigid link subject to gravity through a (nonlinear) flexible transmission, see
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Fig. 1(a), the dynamic model takes the form

Mq̈ +Dq q̇ + τe(ϕ) + g(q) = τext (2)

Bθ̈ +Dθθ̇ − τe(ϕ) = τ, (3)

where M > 0 and B > 0 are the link and motor inerƟas, Dq ≥ 0 and Dθ ≥ 0 are the viscous fricƟon
coefficients at the two sides of the transmission, τ is the control torque on the motor side, and g(q) and τext
are respecƟvely the gravity and the environment/disturbance torques acƟng on the link.

(a) (b)

Figure 1: SchemaƟc models of a link driven (a) by a single flexible transmission, or (b) by a VSA in antagonisƟc
arrangement

An antagonisƟc Variable SƟffness Actuator (VSA), see Fig. 1(b), is characterized by two motors working
in parallel and antagonisƟcally connected to the driven link through nonlinear transmissions. Although dif-
ferent arrangements are possible, we will consider here only the bi-direcƟonal one, which is also denoted as
the AgonisƟc-AntagonisƟc (AA) configuraƟon, see [2]. Depending on the realizaƟon, the nonlinearity of the
deformaƟon/torque characterisƟc of the transmissions results either by the use of nonlinear (e.g., cubic or ex-
ponenƟal) springs or by the arrangement of linear springs in a nonlinear kinemaƟcmechanism. RepresentaƟve
devices in this class are the biologically inspired VSA [31] and the VSA-II [41].

The pair of motor-transmission units are modeled with two similar equaƟons of the form (3), where each
motor-transmission undergoes a deformaƟon ϕi = q − θi, for i = 1, 2. The dynamics of an antagonisƟc VSA
is thus

Mq̈ +Dq q̇ + τe,t(ϕ) + g(q) = τext (4)

Bθ,iθ̈i +Dθ,iθ̇i − τe,i(ϕi) = τi, i = 1, 2. (5)

In this case, the (total) flexibility torque transmiƩed to the driven link and the associated (total) device sƟffness
are given respecƟvely by

τe,t = τe,1(ϕ1) + τe,2(ϕ2) (6)

and
σt(ϕ) = σ1(ϕ1) + σ2(ϕ2), (7)

where

σi(ϕi) =
∂τe,i(ϕi)
∂ϕi

> 0, i = 1, 2, (8)
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are the local sƟffnesses of the two transmissions and ϕ = (ϕ1 ϕ2)T . We stress the separability of the func-
Ɵons (6) and (7), whereas one has in general ϕ1 ̸= ϕ2. Most of the Ɵmes the two motor-transmission units
are idenƟcal (perfect symmetry). However, our later developments apply directly also to the general case.

A general dynamic model of a n-dof manipulator driven by VSA can be wriƩen by compounding the robot
link dynamics with the propermmotor equaƟons.

For mulƟ-dof robots using VSA in antagonisƟc configuraƟons, we havem = 2n and the motor equaƟons
are of the form (5) introduced above. For serial configuraƟons of VSA (like in the case of the DLR VS joint or
the IIT AwAS device), we sƟll have m = 2n motors, but the two motors at each joint are different in size,
funcƟonality, and mathemaƟcal model. SomeƟmes, the assumpƟon is made that the dynamics of the smaller
motors used to adjust the joint sƟffness can be neglected. In that case, onlym = n differenƟal equaƟons are
leŌ in the dynamic model describing the principal motors that actuate the n robot links through (nonlinear)
flexible transmissions, while another vector ofm = n staƟc parameters is present that can be instantaneously
changed in order to modify the robot joint sƟffnesses. With this in mind, we will let the numberm of motor
equaƟons unspecified so as to cover all interesƟng situaƟons.

Furthermore, we take a similar assumpƟon as in the modeling robots with elasƟc joints of constant sƟff-
ness [44], namely that the rotaƟonal kineƟc energy of the rotors of the two motors at each joint is due only to
their own spinning. Under this assumpƟon, and neglecƟng for simplicity dissipaƟve terms, the dynamic model
for a mulƟ-link robot driven by (serial or antagonisƟc) VSA takes the form

M(q)q̈ +C(q, q̇)q̇ + g(q) = τ e (9)

Bθ̈ + τ e = τ (10)

τ e =
(
∂Ue(θ, q,πσ)

∂θ

)T

= ψ(θ − q,πσ), (11)

where M(q) ∈ Rn×n is the symmetric and posiƟve definite link inerƟa matrix, C(q, q̇)q̇ are the Corio-
lis/centrifugal terms, g(q) is the gravitaƟonal term, and B ∈ Rm×m denotes the constant, diagonal, and
posiƟve definite motor inerƟa matrix. Moreover, πσ ∈ Rm is a set of parameters possibly used to change the
sƟffness characterisƟcs of the flexible transmissions. The robot configuraƟon variablesx = (θT qT )T ∈ Rm+n

can be divided into motor posiƟons θ ∈ Rm and link posiƟons q ∈ Rn. Only the motor states (θ, θ̇) are di-
rectly actuated via the control input τ ∈ Rm. In most cases, including the DLR Hand-Arm VSA-based system,
the vector funcƟon ψ that expresses the flexibility torques across the flexible transmissions has a local, sepa-
rable dependence: for the generic joint i, we haveψi = ψ(θi−qi) (the parametric dependence on πσi is oŌen
dropped). Note that the definiƟon of the flexibility torque in eq. (11) has the opposite sign with respect to the
one used in eqs. (2–3) or (4–5). In Sect. 6 on control, we will also use the property that the inverse funcƟon
ψ−1 exists, and thus that θ − q = ψ−1(τ e).

3 SƟffness esƟmaƟon using modulaƟng funcƟons

We consider the problem of esƟmaƟng the nonlinear sƟffness of a single VSA in AgonisƟc-Antagonist (AA)
configuraƟon. We propose here an algorithm based on modulaƟng funcƟons. which allow to avoid the need
of numerical derivaƟves and for which the tuning is very simple. An analysis of the errors indicates the nature
of the esƟmaƟon convergence and provides guidelines for tuning the parameters of the algorithm.

We first present the modulaƟng funcƟons and give some useful properƟes that are used then to define
the sƟffness esƟmator. The effects of measurement noise and truncaƟon errors are analyzed next. Simula-
Ɵon results are provided to illustrate the role of parameters of the algorithm on performance, and finally the
method is validated on experimental data. The results summarized in this secƟon are presented in [29] and in
the submiƩed paper [30].
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3.1 ModulaƟng funcƟons

The following definiƟons and proposiƟon come from [37], and have been slightly modified for our needs.

DefiniƟon 1 A modulaƟng funcƟon of order h on [a, b] (a, b ∈ R) is a funcƟon ψ : [a, b] → R, h-Ɵmes differ-
enƟable such that:

diψ(a) = diψ(b) = 0, i = 0, . . . , h− 1, (12)

where di represent the i-th order derivaƟve.

Example 1 Let us define the following funcƟon:

wi,j(u) = (1− u)iuj , u ∈ R, i, j ∈ N. (13)

Then, wh,h, for h ∈ N, is a modulaƟng funcƟon of order h+ 1 on [0, 1].

DefiniƟon 2 A funcƟon f : [a, b] → R integrable on [a, b] is modulated by taking the inner product with a
modulaƟng funcƟon ψ:

⟨f, ψ⟩ =
∫ b

a
f(u)ψ(u)du. (14)

ProposiƟon 1 Let f1, f2 be integrable real valued funcƟons on [a, b], ψ a modulaƟng funcƟon of order h on
[a, b] and C ∈ R a constant. Then, we have the following properƟes:

1. ⟨dif1, ψ⟩ = (−1)i⟨f1, d
iψ⟩, i = 0, . . . , k − 1,

2. ⟨Cf1 + f2, ψ⟩ = C⟨f1, ψ⟩+ ⟨f2, ψ⟩.

Property 1 is very important, because it allows to replace a derivaƟve of a funcƟon f , which is usually unknown
or uncertain (for example, we only have access to a measured signal), by the derivaƟve of the modulaƟng
funcƟon for which the derivaƟve is known and can be computed analyƟcally.

3.2 EsƟmaƟon algorithm

The esƟmaƟon of the sƟffness is derived from the two equaƟons (5), that is, we look at the system on the
motor side. The algorithm is split into two parts. In the first part, the equaƟons are differenƟated to make the
sƟffness appear explicitly, the sƟffness is approximated by a Taylor expansion, and the resulƟng equaƟons are
transformed, using modulaƟng funcƟons, so that only filtered versions of the measured signals are needed.
In the second part, a Recurslve Least Squares (RLS) algorithm is used to esƟmate the coefficients of the Taylor
expansion, and thus the sƟffness itself.

We start from equaƟon (5), that is:

τe,i(ϕi) = Biθ̈i +Dθ,iθ̇i − τi, i = 1, 2. (15)

DifferenƟaƟng with respect to Ɵme the motor equaƟons yields

ϕ
(1)
i σi(ϕ) = Biθ

(3)
i +Dθ,iθ

(2)
i − τ

(1)
i , (16)

where the shorthand notaƟon x(i) has been used to denote the i-th derivaƟve of a variable x w.r.t. Ɵme. We
take the following Taylor expansion approximaƟon of orderN (i.e., withN + 1 coefficients)

σi(ϕi) ≈
N∑

j=0

αi
j

(ϕi)j

j!
, (17)
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which gives the relaƟon
N∑

j=0

αi
j

ϕ
(1)
i (ϕi)j

j!
= Biθ

(3)
i +Dθ,iθ

(2)
i − τ

(1)
i . (18)

Since the maximum derivaƟve order is three, we need to take a modulaƟng funcƟon ψ of order h = 4, which
will be defined later. ModulaƟng eq. (18) with ψ, one obtains by ProposiƟon 1:⟨

N∑
j=0

αi
j

ϕ
(1)
i (ϕi)j

j!
, ψ

⟩
=

⟨
Biθ

(3)
i +Dθ,iθ

(2)
i − τ

(1)
e,i , ψ

⟩
, (19)

N∑
j=0

αi
j

⟨
d

(
(ϕi)j+1

(j + 1)!

)
, ψ

⟩
= Bi

⟨
d3θi, ψ

⟩
+Dθ,i

⟨
d2θi, ψ

⟩
−⟨dτe,i, ψ⟩ , (20)

N∑
j=0

αi
j

⟨
(ϕi)j+1

(j + 1)!
, dψ

⟩
= Bi

⟨
θi, d

3ψ
⟩
−Dθ,i

⟨
θi, d

2ψ
⟩
−⟨τe,i, dψ⟩ . (21)

Therefore, the above is a relaƟon between the sƟffness and the measured signals θi and τe,i, where the only
source of error is in the Taylor approximaƟon of the σi, i = 1, 2.

If we want to esƟmate the parameters αi with a RLS algorithm, then we need a relaƟon that shiŌs with
Ɵme t. For this purpose, we consider a = t−T and b = t for the domain of themodulaƟng funcƟonψ, T being
the length of the integraƟon window. Then, the modulaƟng funcƟon is taken as ψ(u) = (u− t+T )3(t−u)3.
We have the following relaƟon:

N∑
j=0

αi
j

∫ t

t−T

(ϕi)j+1

(j + 1)!
(u) (dψ) (u)du = Bi

∫ t

t−T
θi(u)

(
d3ψ

)
(u)du−Dθ,i

∫ t

t−T
θi(u)

(
d2ψ

)
(u)du

−
∫ t

t−T
τe,i(u) (dψ) (u)du.

(22)

Performing the change of variable u = Tν + t− T and dividing by T 3 yields
N∑

j=0

αi
j

(
T 2

∫ 1

0

(ϕi)j+1

(j + 1)!
(t+ T (ν − 1))(dw3,3)(ν)dν

)
= Bi

∫ 1

0
θi(t+ T (ν − 1))(d3w3,3)(ν)dν

−Dθ,iT

∫ 1

0
θi(t+ T (ν − 1))(d2w3,3)(ν)dν

−T 2

∫ 1

0
τe,i(t+ T (ν − 1))(dw3,3)(ν)dν,

(23)
where the funcƟon w3,3 is one of those defined by eq. (13), namely for equal h = 3.

In order to obtain a discrete-Ɵme version of this relaƟon, we assume that the sampling period is Ts and that
the integraƟon window is a mulƟple of this period, T = HTs, withH ∈ N. Then, we take an approximaƟon
of the integral with the trapezoidal method, that is:∫ 1

0
f(u)du ≈

H∑
m=0

Wmf(tm), (24)

with tm = mTs,W0 = WM = Ts/2 andWm = Ts,m = 1, . . . , H − 1.
We finally obtain the following relaƟon at the discrete-Ɵme sample k (corresponding to the conƟnuous

Ɵme t = kTs):

Ci(k) =
N∑

j=0

αi
jγ

i
j(k)

△
= AT

i Γ(k), (25)
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withAi = [αi
0, . . . , α

i
N ]T , Γ(k) = [γi

0, . . . γ
i
N ]T , and where

Ci(k) =
H∑

m=0

θi ((k −m)Ts)×
(
BiWm(d3w3,3)(m/H)−Dθ,iWmT (d2w3,3)(m/M)

)
+

H∑
m=0

τe,i ((k −m)Ts)
(
−T 2Wm(dw3,3)(m/M)

) (26)

and

γi
j(k) =

H∑
m=0

(
ϕj+1

i

(j + 1)!

)
((k −m)Ts)

(
T 2Wm(dw3,3)(m/H)

)
. (27)

For k ≤ H , measured values at negaƟve instants of Ɵmes (k −m)Ts, i.e., with k −m < 0, are simply set to
zero. The derivaƟves of w3,3 needed in eq. (26) are given by:

dw3,3(u) = −3w2,3 + 3w3,2, (28)

d2w3,3(u) = 6w1,3(u)− 18w2,2(u) + 6w3,1(u), (29)

d3w3,3(u) = 6w0,3(u) + 54w1,2(u)− 54w2,1(u) + 6w3,0(u). (30)

Note that the definiƟon of Γi and Ci can be seen as filtering by a Finite Impulse Response (FIR) digital filter.
With the obtained discrete-Ɵme relaƟon (25) between the sƟffness parameters in the Taylor expansion and the
measured signals, we can use a standard RLS algorithm (see, e.g., [27]) in order to obtain an approximaƟon Âi

ofAi.

3.3 Error analysis and robustness

The esƟmaƟon method just presented is made essenƟally of two steps: first, a relaƟon between filtered ver-
sions of the measured data and the coefficients of the Taylor expansion of the sƟffness is derived, then it is
used in a least squares algorithm. In principle, assuming perfect motor data, three are the possible sources
of errors: noise on the measurements (and on the actuaƟng torques), truncaƟon in the Taylor expansion, and
numerical integraƟon errors. The noise ω added to the measured data is assumed to be a stochasƟc variable
with zero mean and finite variance. On the other hand, the numerical integraƟon error is assumed to be neg-
ligible. ReducƟon of the esƟmaƟon error is pursued here by a suitable choice of parameters made only within
the first step of the method: we will see how to set design parameters so as to reduce sufficiently the negaƟve
effects on the second step of the method. In parƟcular, we shall treat analyƟcally only the noise on the actu-
aƟng torques τi (i = 1.2). PosiƟon sensors are fairly accurate, and so the effect of a small noise on posiƟon
measurements will be considered only in simulaƟons.

Taking errors into account, equaƟon (25) can be rewriƩen as follows:

AT
i Γ(k) = Ci(k) + eiRN

(k) + eiω(k), i = 1, 2, (31)

where eiRn
(k) is the error due to truncaƟon and eiω(k) is the error due to noise (index i is for the two transmis-

sions of the VSA). Three different parameters can be used to reduce these errors: the length of the integraƟon
window T , the order of the Taylor expansionM , and the sampling period Ts (note that these parameters are
linked via the relaƟonH = T/Ts).
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Analysis of eiRN
We start from equaƟon (18), replacing the approximaƟon of the sƟffness by its true expres-

sion and following the same computaƟons made for the proposed esƟmaƟon method. We obtain:

eiRN
(k) =

H∑
m=0

(σi − σN+1
i ) · (ϕi)((k −m)Ts) · T 2 ·Wm(dw3,3(m/M)), (32)

where σN+1
i is the Taylor expansion of σi up to orderN + 1. From the expression of the truncaƟon error, we

see that in order to get a bound on this error, the transmission deformaƟon ϕi has to be bounded. Hence, we
assume that there exist εi1, ε

i
2 such that ϕi(k) ∈ [εi1, ε

i
2] for all k ≥ 0. Applying then ProposiƟon 2 in [26], one

has
|eiRN

(k)| ≤ T · 5
8

sup
ϕi∈[εi

1,εi
2]

|σi(ϕi)− σN+1
i (ϕi)|, i = 1, 2. (33)

Analysis of eiω We assume here that ω is a white noise with zero mean and finite variance. Similarly to the
truncaƟon error, we obtain that the noise error contribuƟon is equal to

eiω(k) =
H∑

m=0

ω((k −m)Ts)T 2Wm(dw3,3(m/M)), i = 1, 2. (34)

Applying Corollary 2 in [26], it follows that eω(k) converges to zero asH goes to infinity.

Seƫng of parameters The effect of the parameters on the different errors is summarized in Tab. 1. From the
previous analysis, we can derive some indicaƟons for the tuning of the parameters. First, the sampling period
Ts should be taken as small as possible in order to reduce the effect of the noise. The length of the integraƟon
window should be taken large enough to filter the noise, depending on the relaƟve power between signal
and noise, which itself depends on the type and quality of the sensors. Even if increasing T will increase the
truncaƟon error, we see from eq, (33) that this relaƟon is linear, and typical values of T belong to the interval
[0.1, 2] s. The seƫng of T and N can be done independently, and the laƩer value will highly depend on the
range of transmission deformaƟons ϕi.

TruncaƟon error Noise error contribuƟon
N ↑ ↘ ←→
Ts ↑ ←→ ↘
T ↑ ↗ ↘

Table 1: Effect of parameters on the different types of errors

Convergence of the RLS We have shown unƟl now that the error contribuƟons can bemade arbitrarily small,
uniformly with respect to Ɵme, by suitable tuning of some parameters in the method. The effect of uniformly
bounded errors on the esƟmaƟon with a standard RLS algorithm have been studied in [13]. From Theorem 1
therein we obtain that, for uniformly bounded noise, the esƟmaƟon error on the coefficients of the Taylor
expansion goes to zero as the bound on the error goes to zero. Thus, the error on the Taylor coefficients (and
hence the error on the sƟffness itself) will eventually converge to zero. The conclusion is that we can achieve
arbitrarily small esƟmaƟon errors on the sƟffness by suitable tuning the design parameters of the method.
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(a) link posiƟon
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(b) clean deformaƟons
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(c) clean input torques
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(d) link posiƟon
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(e) noisy deformaƟons
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(f) noisy input torques

Figure 2: Clean (top) and noisy (boƩom) data signals used in the simulaƟons (deformaƟons ϕi = q − θi are
affected by noise introduced on the measured motor posiƟons θi, for i = 1, 2)

3.4 SimulaƟon results

We have considered an AgonisƟc-Antagonist VSA mechanism realized with two idenƟcal cubic springs whose
torque-deformaƟon characterisƟc is described by the flexibility torque expression:

τe,i = 10(q − θi)3, i = 1, 2. (35)

The motor and link parameters in eqs. (4–5) are: B1 = B2 = 10−4 [kg m−2],M = 0.0179 [kg m−2],Dθ,1 =
Dθ,2 = 1.27 [Nm s/rad], andDq = 0.0127 [Nm s/rad]. We consider only the case without gravity, i.e., g = 0.

We provide here the results of representaƟve simulaƟons using the the proposed method. The esƟmaƟon
methodwas run on the sets ofmeasurement data reported in Fig. 2. In order to precisely evaluate the effects of
noise on the reconstrucƟon of the device sƟffness, three different cases are compared in simulaƟon: without
noise, with white noise affecƟng the input torques τi only, and finally with white noise affecƟng both the input
torques and the motor posiƟons θi (and thus, the deformaƟons ϕi = q − θi that enter in the computaƟons).
The measurement of the link posiƟon q is assumed to be ideal.

The importance of noise is quanƟfied by the Signal-to-Noise RaƟo:

SNR = 20 log10
V ar(signal without noise)

V ar(noise)
.

Tthe lower is the SNR, themore significant is the noise. Noise on the flexibility torquemeasurements has been
taken large, corresponding to SNR = 9, while noise on motor posiƟons was low with a SNR = 140. We
have also compared the effect ofN in eq. (17) on the sƟffness esƟmaƟon. The best value in this case would be
N = 2, because the assumed flexibility torques are cubic polynomials in ϕi and thus the sƟffness is a quadraƟc
funcƟon. Since the actual behavior of the springs in the transmissions might not be strictly polynomial (e.g.,
we may consider also exponenƟal springs), we have tested our algorithm both withN = 2 andN = 4 (which
means, respecƟvely, three and five coefficients in the Taylor expansion (17)).

The other design parameters are set as follow: the length of the integraƟon window is T = 0.5 s, the sam-
pling Ɵme is taken as Ts = 0.001 s, while the covariance matrix for the RLS is iniƟalized atP (0) = 108 · IN+1.
The sƟffness esƟmaƟon results are given in Fig. 3. These are also summarized in Tab. 2, where the average of
the Mean Square Error (MSE) and Mean Square RelaƟve Error Percentage (MSREP), see, e.g., [9], have been
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(a) Noisy torques and clean posiƟons,
withN = 2
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(b) Noisy torques and posiƟons,
withN = 2
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(c) Noisy torques and posiƟons,
withN = 4

Figure 3: SƟffness esƟmaƟon results with different combinaƟons of clean and noisy signals and with different
order of the Taylor expansion

computed over 100 simulaƟons. Both MSE and MSREP were evaluated using only data aŌer convergence of
the esƟmaƟon process converged, that is between t = 2 s and t = 10 s. We can see that in every case and
with the same seƫngs, the method performs saƟsfactorily.

operaƟve condiƟons MSE MSREP
N = 2 no noise 3.4 10−2 5 10−5

N = 2 noise on torques 19.3 4.8 10−2

N = 2 noise on torques and posiƟons 38.4 1 10−1

N = 4 noise on torques 39.9 8.7 10−2

N = 4 noise on torques and posiƟons 56.7 1.2 10−1

Table 2: StaƟsƟcal evaluaƟon of simulaƟon results

3.5 Experimental results

We have tested the method on the AgonisƟc-AntagonisƟc VSA experimental device with exponenƟal springs
shown in Fig. 4 and fully described in [12].

In the experiments, the order of the Taylor expansion was set toN = 9 and the length of the integraƟon
window was T = 0.5 s. The iniƟalizaƟon of the covariance matrix for the RLS algorithm was set to P (0) =
105 ·ℑ10. The results of the sƟffness esƟmaƟon are shown in Fig. 5. We used a nominal model for comparison,
although this not exact due to uncertainƟes in the parameters of the actuator. Therefore, we consider that the
acquired knowledge of the sƟffness is reliable up to an error about 25 %, represented by the horizontal line in
Fig. 5b).
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(a) experimental setup
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(b) link posiƟon
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(c) deformaƟons
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(d) flexibility torques

Figure 4: The experimental setup on the leŌ consists of an antagonisƟc VSA system with exponenƟal springs,
realized using a linear spring forced to move on a suitable cam profile. Force sensors (strain gauges) are
mounted on the tendons connecƟng the springs to the link. PosiƟon sensors (encoders) are mounted on the
link and on two tendon pulleys coupled to the input levers. The collected experimental data measurements
are shown on the right: link posiƟon, deformaƟons, and flexibility torques
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(a) total device sƟffness
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(b) relaƟve error

Figure 5: Experimental sƟffness esƟmaƟon (a) for the VSA of Fig. 4 and its relaƟve error (b) w.r.t. a nominal
model

	
  
Page 12 of 41



ICT–287513 SAPHARI Deliverable D3.2.1

4 Signal-based sƟffness esƟmaƟon

We present next a sƟffness esƟmaƟon method in VSA-based systems that builds upon the residual approach
presented in [9]. A main feature of that approach was its applicability with or without the use of a joint torque
sensor. In addiƟon, the method presented here does not use any knowledge about model parameters (i.e., we
relax also the need of knowing the inerƟa and damping of the motors). Therefore, the method is purely based
on input and output measurable signals. The results summarized in this secƟon are detailed in the submiƩed
paper [8].

As done already in Sec. 3 and in [9], we shall work on the motor side of an antagonisƟc VSA, where we can
esƟmate the sƟffness of each transmission separately, and then compute the total sƟffness of the device using
eq. (7). Therefore, we shall drop in the following the index i = 1, 2 in eq. (5), since the treatment is parallel
but idenƟcal for the two transmissions. Equivalently, we can just consider the motor equaƟon (3)

IntegraƟng in Ɵme the motor equaƟon gives

Bθ̇ +Dθθ −
∫ t

0
τe(ϕ)ds =

∫ t

0
τds. (36)

This representaƟon removes the presence of the second Ɵme derivaƟve of the motor posiƟon output, which
is difficult to numerically esƟmate in the presence of sensor noise. At this stage, the flexibility torque τe(ϕ)
can be approximated by using a linear combinaƟon ofm polynomial basis funcƟons fi(ϕ), i = 1 . . .m:

τe(ϕ) ≈
m∑

i=1

αifi(ϕ). (37)

We note that eq. (37) plays a similar role as eq. (17) in Sect. 3. Indeed, the two approximaƟons are defined
on different, but differenƟally related quanƟƟes: the flexibility torque here, and the sƟffness in the previous
secƟon. On the other hand, the N -th order Taylor expansion is a parƟcular case of (37), when fi(ϕ) = ϕi−1

and m = N + 1. However, the present approximaƟon is more flexible than the Taylor expansion, since we
can enforce a priori some desired structure to the soluƟon. A typical example is when the flexibility torque is
known to behave in a skew-symmetric way around ϕ = 0, i.e., τe(−ϕ) = −τe(ϕ). Then, only odd powers of i
will be considered, fi(ϕ) = ϕ2i−1, with a saving on the total number of coefficients.

We can rewrite now eq. (36) as

Bθ̇ +Dθθ −
m∑
i

αi

∫ t

0
fi(ϕ)ds =

∫ t

0
τds. (38)

Assuming that only the input and output signals (τ , θ, ϕ, and θ̇) are known, we have to esƟmate the parameter
vectorα = (α1 α2 . . . αm) of the funcƟon fiƫng the flexible torque in (37), as well as the motor inerƟa
B and damping Dθ. Thus, we would like to find the parameter vector ξ = (B Dθ α) of dimension n =
(m+ 2) that minimizes the square of the residual error(∫ t

0
τds− F T ξ

)2

, (39)

where

F T =
(
θ̇ θ

∫ t

0
f1(ϕ)ds . . .

∫ t

0
fm(ϕ)ds

)
.

In a discrete-Ɵme approach with Ts as the sampling Ɵme, we can consider a data set composed by amatrix
A that contains l vectors F k = F (tk), sampled at t = tk = kTs,

A =
(
F 1 F 2 . . . F l

)T
, (40)
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and by the vector

b =
(∫ t1

0
τds

∫ t2

0
τds . . .

∫ tl

0
τds

)T

. (41)

The parameter vector esƟmate that provides the least square error (39) in a batch mode, namely considering
the whole data set, is obtained by pseudo-inversion of matrixA:

ξ̂ = A#b. (42)

From the esƟmated parameter vector ξ̂, we extract directly the esƟmatedmotor inerƟa B̂ andmotor damping
D̂θ. The esƟmated sƟffness is obtained as

σ̂ =
m∑
i

α̂i
∂fi(ϕ)
∂ϕ

=
m∑
i

α̂igi(ϕ). (43)

Note that the funcƟons gi(ϕ) are available analyƟcally.

4.1 On-line robust implementaƟon

The approach represented by eqs. (40–42) collects a batch of data and is evaluated offline: therefore, it as-
sumes that the parameter vector ξ is constant over Ɵme. This assumpƟon is not general enough. The motor
inerƟa B and damping Dθ can be assumed constant during an experiment, although they sƟll need to be
idenƟfied from Ɵme to Ɵme, and this generally requires disassembling the joint and disconnecƟng the flexible
transmissions. On the other hand, the parameter vector α cannot be considered constant during an experi-
ment, mainly for two reasons: i) the transmission characterisƟcs slightly changes over Ɵme, due to variaƟon
of temperature and stress caused by repeƟƟvemovements; ii) the approximaƟon (37) may not able to capture
well the flexibility torque characterisƟcs in all its domain (except for simple or ad-hoc transmissions), and thus
the parameterα has to be slowly adapted when changing the working point of the device.

The use of a Recursive Least Squares (RLS) algorithm for on-line esƟmataƟon of the sƟffness in a VSA device
was originally proposed in [6], and then used also in [7,9,29] aswell as by themethod presented in the previous
secƟon. The principal drawback of the RLS algorithm is its sensiƟvity to poor excitaƟon condiƟons. In such
cases, the esƟmaƟon of the inverse correlaƟon matrix (ATA)−1 loses the property of posiƟve definiteness
and/or symmetry, causing a divergence in the esƟmaƟon. A soluƟon of this problem has been presented in [7]
at the cost of introducing an addiƟonal parameter c that has to be carefully tuned.

We propose here to use a QR decomposiƟon-based RLS (QR-RLS) algorithm that can address this instability
phenomena. Instead of working with the inverse correlaƟon matrix of the input signal, the QR-RLS algorithm
performs QR decomposiƟon directly on the correlaƟon matrix of the input signal. Therefore, this algorithm
guarantees the property of posiƟve definiteness and is more numerically stable than the standard RLS algo-
rithm.

For use in standard least squares minimizaƟon, the QR decomposiƟon of the l × nmatrixA is given by

QA =
(

R
0(l−n)×n

)
, (44)

whereQ is a l × l orthogonal matrix and R is an n × n upper triangular matrix. Applying the same unitary
matrixQ to the data vector b

Qb =
(
p
⋆

)
(45)

we obtain then-dimensional vectorp (a ⋆ represents the remaining unused values). The offline esƟmaƟon (42)
is then obtained as

ξ̂ = R−1p. (46)
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In the on-line recursive algorithm, QR-RLS updates the matrixRk each Ɵme step k using the relaƟon [28]

Q̂k

(
λRk−1

F k

)
=
(

Rk

01×n

)
, (47)

where λ ∈ [0, 1] is the so-called forgeƫng factor (Ɵpically, larger than 0.95) used to discount older samples,
and thus increasing the esƟmator adaptability to non-constant parameters. Note that Q̂k is a (n+1)×(n+1)
matrix, and its dimension does not increase with new samples. The QR decomposiƟon (47) can be recursively
updated using a series of Givens rotaƟons to zero out the non-zero elements on and below the diagonal due
to the added row F k. The orthogonal matrix Q̂k is used then to update pk as

Q̂k

 λpk−1∫ tk

0
τds

 =
(
pk

⋆

)
, (48)

where an obvious recursive expression can be given also to the integral of the input torque on the leŌ-hand
side. Finally, the on-line parameter esƟmaƟon is

ξ̂k = R−1
k pk, (49)

and the sƟffness esƟmate at Ɵme t = tk is obtained using (43) with the current parameter vector α̂k.
It should be noted that an iniƟalizaƟon phase of n samples is needed to set up a completeRn matrix to

be used in the recursive esƟmaƟon. The QR-RLS algorithm is not only robust with respect to poor excitaƟon,
but it is also simple to tune, being the forgeƫng factor λ the only parameter to be chosen.

4.2 Results with ideal input-output signals

To show the effecƟveness of the proposed method, we present simulaƟons on the VSA-II device developed by
the University of Pisa [41]. The nonlinear flexibility torque of the two transmissions of the VSA-II is modeled
as

τe,i(ϕi) = 2ki β(ϕi)
∂β(ϕi)
∂ϕi

, i = 1, 2, (50)

where ki is the (constant) sƟffness of the spring in the i-th transmission, and

β(ϕi) = arcsin
(
Ci sin

(
ϕi

2

))
− ϕi

2
, i = 1, 2, (51)

being Ci > 1 a geometric parameter of the 4-bar mechanisms, and ki the sƟffness of the internal spring. Due
to the antagonisƟc arrangement, the total flexibility torque acƟng on the link dynamics is given by the simple
sum in eq. (6). For this reason, and with no loss of generality, we will present just the esƟmaƟon results for a
single transmission of this device.

The VSA-II dynamic model is given by eqs. (4–5), and its nominal parameter data were presented in [41].
In parƟcular, the nominal values for the motor parameters were set there to be BN = 7.3 [Kg·m·mm] and
Dθ,N = 1 [N·mm·s/rad].

FInally, to simulate a non-constant characterisƟc for the flexible transmission. we have introduced a small
Ɵme driŌ to the spring sƟffness value k1,

k1 = k1,N + 0.0005 t [N·mm/rad],

where k1,N = 500 [N·mm/rad] is the nominal spring sƟffness found in [41].

	
  
Page 15 of 41



ICT–287513 SAPHARI Deliverable D3.2.1

SƟffness esƟmaƟon methods that need the availability of motor data will use the above nominal data BN

and Dθ,N . However, in the actual model used in the simulaƟons we have taken values BA and Dθ,A for the
motor parameters that are slightly off the nominal ones, mimicking the situaƟon of a small (but realisƟc) error
in the off-line idenƟficaƟon phase of the motor dynamics. The actual values considered (or, the ground truth
in the simulaƟons) were BA = 7.5 [Kg·m·mm] andDθ,A = 0.9 [N·mm·s/rad].

In the first set of simulaƟons, ideal input and output signal have been considered. Thus, we assume that
the actual q, θ, and θ̇ are measured and no noise or approximaƟon is introduced on the driving torques τi. The
two motors apply the sinusoidal torques τ1(t) = 50 · sin 0.1πt and τ2(t) = 50 · sin 2πt [N·mm], respecƟvely.
The simulaƟon runs with a sampling Ɵme Ts = 1 ms, starƟng from q(0) = θ1(0) = θ2(0) = 0 [rad] (lower
equilibrium configuraƟon), moving under gravity (in the verƟcal plane) and with the system iniƟally at rest. In
the fiƫng funcƟon (37), we used m = 7 polynomial terms fi(ϕ) = ϕi. The forgeƫng factor in the QR-RLS
algorithm has been set to λ = 0.98.
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Figure 6: SƟffness esƟmaƟon for one of the two transmissions of the VSA-II device, using three different meth-
ods: Actual sƟffness σ (solid, blue) and esƟmated σ̂ (dashed, green)

Figure 6 shows the results for the sƟffness esƟmaƟon obtained with the proposed method, compared to
a standard off-line Least Squares method and to the residual/RLS-based on-line esƟmator presented in [9].
It is rather evident that the newly proposed method outperforms the other two. In fact, the standard LS,
which considers the whole data set in the esƟmaƟon of parameters assumed constant, is not able to track
the Ɵme variaƟon of the transmission flexibility. On the other hand, the method proposed by Flacco et al. [9]
works with the assumed nominal motor parameters, and so an imperfect idenƟficaƟon of these parameters
is reflected in an error on the esƟmated sƟffness. Moreover, the present method returns also esƟmates of
the motor parameters that are very close to the actual ones, namely B̂ = 7.5135 [Kg·m·mm] and D̂θ =
0.9148 [N·mm·s/rad].

To quanƟfy the performance of sƟffness esƟmaƟon, we have considered the same two esƟmaƟon error
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indices of Sect. 3, namely the MSE and the (dimensionless) MSREP, both taken over lfin − lin > 0 samples:

MSE =

lfin∑
k=lin

[
(σk − σ̂k)

2
]

lfin − lin
, MSREP =

lfin∑
k=lin

[(
σk − σ̂k

σk

)2
]

lfin − lin
· 100. (52)

In the evaluaƟon of these two indices, the first lin = 2000 samples have been discarded, corresponding to the
first 2 s of simulaƟon data, so as to avoid the strong influence of an iniƟal transient phase. The comparaƟve
values of the indices are given in Tab. 3.

Proposed method Standard LS Flacco et al. [9]

MSE
0.58 102.64 31.60

[N·mm2/rad2]
MSREP

0.002 0.224 0.07
[%]

Table 3: Performance of sƟffness esƟmaƟon for the VSA-II

4.3 Dealing with signal noises

Thepresence of noise on input andoutput signals has to be taken into account in a realisƟcmodel of an actuator
with flexible transmission (or a VSA). For the torque input τ we can assume a white Gaussian noise with zero
mean, while noise on the outputs q and θ will depend on the type of sensor we would like to consider. For
instance, white noise was assumed in [29], while the presence of noise due to quanƟzaƟon and discreƟzaƟon
of the encoders was considered in [9].

In [9], a Modified KinemaƟc Kalman Filter (MKKF) was used to filter the encoder quanƟzaƟon noise. The
MKKF is a causal filter that outputs a smoothed version of the input signal and a good esƟmaƟon of its first
Ɵme derivaƟve, when the SNR is adequate. On the other hand, the sƟffness esƟmator based on operaƟonal
calculus introduced in [29] and its refined version using modulaƟng funcƟons presented in Sec. 3 result both
in a series of non-causal FIR filters on signals that will be feeded in the subsequent RLS algorithm.

AŌer some tesƟng and analysis of these non-causal filtering methods, we realized that their success relies
on the validity of two operaƟve condiƟons:

1. The same non-causal acƟon is applied to all signals used in the RLS algorithm.

2. The characterisƟcs of the flexible transmissions are quasi-constant (namely, can change only very slowly).

The FIR filtering acƟon is applied to a moving windowW of data, and the resulƟng value is assigned as output
to the center instant of this window. Thus, when working on-line, the filtered value has a Ɵme delay of T W

2 .
Despite this delay, a very effecƟve filtering acƟon is achieved, because of the possibility of considering both
previous and successive data. CondiƟon 1 implies that, by having the same Ɵme delay for all signals used in
the polynomial fiƫng, the esƟmate the parameter vector α will inherit the same Ɵme delay: namely, at step
k we would esƟmate α̂k−(W/2). From CondiƟon 2 it follows that we can assume αk ≃ α̂k−(W/2).

With the above in mind, we propose here to introduce two separate filtering acƟons: a non-causal filter, so
as to obtain a robust esƟmaƟon of the input/output signals to be used in the QR-RLS algorithm; and a causal
filter, in order to get a non-delayed smoothed value of ϕ to be used in eq. (43) for the esƟmaƟon of the current
sƟffness.
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The filtered transmission deformaƟon ϕ̂k can be obtained by two KinemaƟc Kalman Filters (KKF), one on
the motor posiƟon θ and one on the link posiƟon q. Let x be a generic angular posiƟon and ẋ the associated
angular velocity. In order to esƟmateψ(k) = ψ(tk) = (x(k) ẋ(k))T with a KKF, we define

ψ(k) =
(

1 T
0 1

)
ψ(k − 1) + µ(k) (53)

z(k) =
(

1 0
)
ψ(k) + ν(k), (54)

where z(k) is the noisy sampled measure (the encoder angle in our case), and µ(k) and ν(k) are discrete-
Ɵme realizaƟons of zero mean Gaussian noises having, respecƟvely, covariance matrix Q and variance R. In
the state equaƟon (53), acceleraƟon is not considered andµ represents also the noise due to this absence. By
defining Γ =

(
T 2/2 T

)T , the covariance matrix of µ isQ = Va ΓΓT , where Va is the variance associated to
the state. While the variance R of the measures is usually set to a constant value if the noise is Gaussian, in
the case of encoder quanƟzaƟon the Modified KKF proposed in [9] should be used instead.

A Savitzky-Golay (SG) non-causal filter [40] is applied to the data needed as inputs to the QR-RLS, namely q,
θ, and τ . This digital filter is applied to a windowW of measured data and is able to obtain their smoothing, by
increasing the signal-to-noise raƟo without largely distorƟng the signal. This is achieved by fiƫng low-degree
polynomials to successive sub-sets of adjacent data points. When the data points are equally spaced, as in our
case, an analyƟcal soluƟon to the least squares fiƫng can be found, in the form of a single set of coefficients
that can be applied to all data sub-sets. The filter output provides smoothed esƟmates of the input signal (and
of derivaƟves of the smoothed signal) at the central point of each data sub-set. The QR-RLS applied on SG
filtered data results in a very robust esƟmaƟon of the parameter vector α̂k−(W/2), despite this comes at the
price of a Ɵme delay of T W

2 seconds.
Assuming that condiƟons 1) and 2) are saƟsfied, sƟffness esƟmaƟon is obtained by puƫng together the

two filtered informaƟon:

σk ≃
m∑
i

α̂(i,k−W
2 )gi(ϕ̂k). (55)

4.4 Results with realisƟc signals

To show the effecƟveness of the proposed approach and its robustness with respect to noise, we have com-
pared it with two state-of-the-art sƟffness esƟmators.

The first one is the residual-based sƟffness esƟmator [9]. We have simulated the same VSA-II model under
the same operaƟve and design condiƟons: encoder quanƟzaƟon, white noise on the motor torques, torque
input profiles, polynomials used for the fiƫng, etc. The same causal MKKF used in [9] was applied to esƟmate
ϕ̂, and a SG filter with a window of 1 second (W = 1000 samples at Ts = 0.001 s) and a 20-th degree
polynomial for esƟmaƟng the QR-RLS inputs. The forgeƫng factor was not considered (λ = 1).

The total sƟffness esƟmated with the present method shows a good quality, see Fig.7. The result is qualita-
Ɵvely similar to the one obtained in [9], while a quanƟtaƟve comparison can be done by looking at the indices
MSE and MSREP as defined in (52). Here, we obtained

MSE = 2.0919 [N·mm2/rad2] and MSREP = 0.5162%,

while in [9] the result was

MSE = 92.2 [N·mm2/rad2] and MSREP = 0.046%.

In addiƟon, the new method provides also a good esƟmate of the motor parameters: B̂1 = 7.2360 and
B̂2 = 7.3022 [Kg·m·mm]; D̂θ,1 = 0.9731 and D̂θ,2 = 0.9980 [N·mm·s/rad].
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Figure 7: EsƟmaƟon of the total sƟffness of the VSA-II device, when modeled and controlled under the same
realisƟc condiƟons as in [9]: Actual sƟffness σ (solid, blue) and esƟmated σ̂ (dashed, green)

The second work taken into account is [29], where an antagonisƟc VSA with cubic flexibility torques has
been considered. Also in this case, we simulated the same model (B = 10−4, Dθ = 1.27, etc.), using the
same fiƫng polynomials and torque inputs, and under the same operaƟve condiƟons (heavy white noise on
all signals). We used the KKF to esƟmate ϕ̂ with Va = 1010 and R = 104, and a SG filter with a window of 1
second (W = 1000) and a polynomial of the 20-th degree polynomial for esƟmaƟng the QR-RLS inputs. The
forgeƫng factor was set again to λ = 1.
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Figure 8: SƟffness esƟmaƟon for the antagonisƟc VSA with cubic flexibility torques considered in [29]: Actual
sƟffness σ (solid, blue) and esƟmated σ̂ (dashed, green)

EsƟmaƟon of the total sƟffness is shown in Fig.8. The numerical comparison of the esƟmaƟon performance
indices yields for the present method

MSE = 1.2583 [N·mm2/rad2] and MSREP = 1.6936%,

while in [29] the result was

MSE = 4.2 [N·mm2/rad2] and MSREP = 0.7%.

In the present case, good esƟmates were found also for the a priori unknownmotor parameters: B̂1 = 0.0023,
B̂2 = 7.1942× 10−4, D̂θ,1 = 1.2843, and D̂θ,2 = 1.2706.

It is difficult to assess in general the superiority of one method over the other in terms of performance,
especially when just looking at a single or few simulaƟons. Nonetheless, we can at least conclude that the
present method has the same sƟffness esƟmaƟon quality of state-of-the-art algorithms, while it does not rely
on the knowledge of motor parameters (actually, of any physical parameter).
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5 Damping esƟmaƟon

Wemove next to another issue in the characterizaƟon of general Variable Impedance Actuators (VIA), namely
esƟmaƟon of the total damping of the device. Indeed no sensor exists for measuring physical impedance, nor
for measuring its specific individual elements: sƟffness and damping. As we have seen in the previous Sects. 3
and 4, there is acƟve on-going research focusing on the design and implementaƟon of sƟffness esƟmators for
VSA, as a follow-up of the works [7, 9, 12].

On the other hand, Variable Physical Damping ActuaƟon (VPDA) has been lately invesƟgated as a comple-
ment to compliant actuators [22]. In these actuators, the transmission damping can be regulated on demand.
However, no physical damping esƟmaƟon algorithms exist at present. Similar to the use of sƟffness esƟma-
Ɵon, an esƟmaƟon method of the device damping would be certainly useful for feedback control purposes, as
well as for diagnosƟcs. We summarize here the method proposed in the submitetd paper [19].

5.1 EsƟmaƟon of damping in VPDA

We present a damping esƟmaƟon method that employs a robust RLS algorithm. The method is based only
on the measured dissipaƟon torque and on the transmission deformaƟon velocity, which is derived from the
measured deformaƟon angle.

Consider a generic damping element embedded in a mechanical system, generaƟng a dissipaƟon torque
τd which depends in general on its displacement z and velocity ż, and on the control input u to the damping
element. The corresponding dampingD > 0 of this element can be expressed as

D(z, ż, u) =
∂τd(z, ż, u)

∂ż
, (56)

in which the dissipaƟon torque is assumed to be an odd funcƟon with respect to the velocity, i.e.,

τd(z,−ż, u) = −τd(z, ż, u). (57)

We can formulate an esƟmaƟon problem in which the output signal, namely the (scalar) dissipaƟon torque
τd, is recursively esƟmated by a linear adapƟve filter with n unknown coefficients w = (w1, . . . , wn)T and
n input signals v = (v1, . . . , vn)T , which can be funcƟons of other system readings. The input-output linear
model is then expressed at discrete-Ɵme instants ti = iTs, for i = 1, 2, . . . , by

τd(i) = vT (i)w∗ + ξ(i), (58)

where w∗ is the opƟmal soluƟon in the mean squares sense and xi is a zero-mean white Gaussian noise
sequence with variance σ2.

The dissipaƟon torque is then approximated by a polynomial funcƟon of the damper velocity ż that saƟsfies
the skew-symmetric condiƟon (57). Therefore, the elements of the input signal vector are expressed by

vj = ż2j−1 for j = 1, . . . , n. (59)

Similarly to the sƟffness esƟmaƟon case, the dampingD can thenbeobtained from (56) by analyƟcal derivaƟon
as

D =
(
∂v

∂ż
(i)
)T

w = (v′(i))Tw, (60)

where the elements of v′ are
v′j = (2j − 1) ż2j−2 for j = 1, . . . , n. (61)

Givenm > n data points, the relaƟon (58) leads to the over-constrained linear system

τ d = Vw∗ + ξ, (62)

where τ d = (τd(1), . . . , τd(m))T , ξ = (ξ(1), . . . , ξ(m))T and V = (v(1), . . . ,v(m))T ∈ Rm×n.
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RLS algorithm Given an esƟmate of coefficients ŵ, the predicƟon error vector ϵ ∈ Rm is defined by

ϵ = τ d − Vŵ. (63)

Provided that V is full column rank, minimizaƟon of the cost funcƟon (LS problem)

J(ŵ) = ϵT ϵ, (64)

is provided by the LS esƟmate
ŵ =

(
VTV

)−1
VTτ d. (65)

The on-line version of this soluƟon leads to the standard RLS esƟmaƟon algorithm (see, e.g., [38]), which is
reported here for the reader’s convenience:

ϵ(i) = τd(i)− vT (i)ŵ(i− 1) (66)

r(i) = vT (i)P(i− 1)v(i) (67)

k(i) =
P(i− 1)v(i)

1 + r(i)
(68)

ŵ(i) = ŵ(i− 1) + k(i)ϵ(i) (69)

P(i) =
(
I− k(i)vT (i)

)
P(i− 1). (70)

where r is themodified Kalman residual covariance,k ∈ Rn is themodified Kalman gain vector, andP ∈ Rm×m

denotes the covariance matrix of the predicƟon error.
In the sƟffness esƟmaƟon method presented in [9], some instability problems due to the lack of persistent

excitaƟon of the standard RLS algorithmwere aƩenuated by using a modificaƟon introduced in [3]. In a similar
way, equaƟons (69) and (70) can be replaced by

ŵ(i) = ŵ(i− 1) + α(i)k(i)ϵ(i) (71)

and
P(i) =

(
I− α(i)k(i)vT (i)

)
P(i− 1). (72)

where α(i) is a stability factor which is simply selected as in [9],

α(i) = c
1 + r(i)
1 + c r(i)

, (73)

where c > 0 is the stabilizing factor.

Damping esƟmaƟon algorithm The final algorithm for esƟmaƟng damping in VPDA is obtained by a suitable
modificaƟon of the RLS method to account for Ɵme-varying condiƟons.

It is well-known that an exponenƟal forgeƫng factor can be incorporated as a weighƟng term in the RLS
algorithm, so as to aƩain faster convergence for Ɵme-varying systems, discounƟng older signals and relying
more on recent ones [17]. One way to Include a forgeƫng factor, is to modify the cost funcƟon (64) as

J(ŵ) = ϵTR−1ϵ, (74)
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where R = diag{λm−1, ..., λ0} and λ ∈ (0, 1] is the forgeƫng factor [27].
A further method for enhancing the tracking performance of the RLS algorithm is by using a direcƟonal

forgeƫng scheme, in which past data are forgoƩen solely in those direcƟons of the parameter space from
where new informaƟon comes [18]. The exponenƟal and direcƟonal forgeƫng RLS algorithm, modified by
BiƩanƟ [3] with the goal of achieving a beƩer esƟmaƟon performance for Ɵme-varying parameters, can be
described by incorporaƟng a correcƟon factor δ ∈ [0, 0.01] in the update of the covariance matrix as

P(i) =
(
I− P(i− 1)v(i)vT (i)

β−1(i) + r(i)

)
P(i− 1) + δI, (75)

where β(i) is an auxiliary variable defined as

β(i) =

 λ(i)− 1− λ(i)
r(i)

, if r(i) > 0,

1, if r(i) = 0.
(76)

When λ = 1, no forgeƫng effect is applied giving up a more prompt esƟmaƟon response to Ɵme-varying
parameters. On the other hand, any decrease of this factor enhances the contribuƟon of latest data on the
esƟmaƟonprocess (which is good) but also the sensiƟvity to noise (which is bad) [4]. To copewith this situaƟon,
one needs to resort to a variable forgeƫng factor through monitoring predicƟon error: when the predicƟon
error grows rapidly, the forgeƫng factor is progressively decreased down to a minimum value λmin; when the
predicƟon error is small, it is increased up to its maximum value, λ = 1. Thus, a variable forgeƫng factor
scheme can be expressed as [45]

λ(i) = λmin + (1− λmin) 2L(i), (77)

with

L(i) = −round
(
ρϵ2(i)
η(i)

)
. (78)

where ρ is a design parameter, the funcƟon round(.) rounds its argument to the nearest integer, and η(i) is
the energy of an a priori esƟmaƟon error defined for moderaƟng the sensiƟvity of the forgeƫng factor to the
dynamic range of the error. The laƩer is updated as

η(i) = λcη(i− 1) + ϵ2(i), (79)

being λc another constant forgeƫng factor.
The proposed algorithm is based on the use of a variable weighƟng factor (77)–(79) in the exponenƟal and

direcƟonal forgeƫng RLS algorithm defined by (66)–(69) and (75)–(76). The complete method is summarized
in Algorithm 1.

5.2 Experimental results

Experiments were carried out to test the damping esƟmaƟon algorithm on a VPDA device, the CompAct ac-
tuator developed at IIT, see [21]. ExcitaƟon of the system is performed through manual moƟon of the link,
while the motor is controlled to maintain a fixed posiƟon. To achieve a desired viscous damping Dd in this
mechanical system, the normal force applied to the fricƟon plates is modulated so as to emulate a viscous
damping behaviour. For ease of implementaƟon, a value n = 2 was used in the approximaƟon (59), resulƟng
in a linear-cubic polynomial.
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Algorithm 1 Damping esƟmaƟon algorithm
Parameters: λc, λmin, ρ, δ and n
IniƟalizaƟon: η(0), P(0),w(0) and i = 0
while “systems is running” do
i = i+ 1
input τd(i), ż
v(i) = (ż, . . . , ż2n−1)T

ϵ(i) = τd(i)− vT (i)ŵ(i− 1)
η(i) = λcη(i− 1) + ϵ2(i)
L(i) = −round(ρϵ2(i)/η(i))
λ(i) = λmin + (1− λmin) · 2L(i)

r(i) = vT (i)P(i− 1)v(i)
if r(i) > 0 then

β(i) = λ(i)− 1− λ(i)
r(i)

else
β(i) = 1

end if

k(i) =
P(i− 1)v(i)

1 + r(i)
ŵ(i) = ŵ(i− 1) + k(i)ϵ(i)
τ̂d(i) = vT (i)ŵ(i)
v′(i) =

(
1, . . . , (2n− 1)ż2n−2

)T
D̂(i) = v′T (i)ŵ(i)

P(i) =
(
I− P(i− 1)v(i)vT (i)

β−1(i) + r(i)

)
P(i− 1) + δI

output τ̂d(i), D̂(i)
end while
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Figure 9: VariaƟon in dissipaƟon torque vs. relaƟve velocity of fricƟon plates

Figure 10: Time evoluƟon of the clutch normal force and of the relaƟve velocity of clutch plates

Constant damping The first experiment consists in esƟmaƟng a desired constant viscous damping behaviour,
as specified by Dd = 3 [Nm s/rad]. Figure 9 shows the variaƟon in dissipaƟon torque versus the change in
relaƟve velocity of the fricƟon plates. Since a constant damping was regulated, based on (56) the slope of
the trend-line of this graph provides a value D = 3.02 Nms/rad with Normalized Root Mean Squared Error
(NRMSE) of 2.74%, represenƟng a suitable approximaƟon of the real damping in the system.

The esƟmaƟon of the constant damping using the proposed approach provided a NRMSE of 2.89%, which
is quite close to the previous value. The Ɵme evoluƟon of the fricƟon force applied by the clutch plates and
the relaƟve velocity of the plates are shown in Fig. 10. The behaviour of the esƟmated torque in comparison to
the measured one is reported in Fig. 11, together with the normalized error between the two. The normalized
error is below 1%, showing the good accuracy of the esƟmaƟon.

Figure 12 represents the evoluƟon in Ɵme of the coefficients w1 (weighƟng the linear velocity term) and
w2 (weighƟng the cubic velocity term) of the approximaƟng polynomial, the desired constant damping, the
(slightly oscillatory) esƟmated one, and the percentage error between the two. The last plot shows that this
error reaches a maximum of about 5%, being mostly due to unmodelled fricƟon around the zero-velocity area
(the effect of sƟcƟon on the dissipaƟon torque around the origin can also be observed in Fig. 9).
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Figure 11: Time evoluƟon of measured (solid, blue) and esƟmated (dashed, red) dissipaƟon torque [top], and
the normalized error between the two [boƩom]

Figure 12: Time evoluƟon of the two coefficientsw1 (blue) andw2 (red) in the polynomial approximaƟon [top],
constant desired (blue) and esƟmated (red) damping [center], and the error between the two [boƩom]
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Figure 13: Time evoluƟon of the clutch normal force [top], measured (blue, solid) and esƟmated (red, dashed)
dissipaƟon torques [center] and the normalized error between the two [boƩom]

Time-varying damping In this second experiment, the normal force applied on the fricƟon plates is modu-
lated so as to produce a desired Ɵme-varying damping, as specified by by

Dd(t) = 1 + 1.4 sin2(0.05π t) + 1.7 sin2(0.1π t). (80)

The results obtained using the damping esƟmaƟon algorithm provide in this case a value NRMSE of 3.17%.
Figure 13 shows the force applied to fricƟon plates, the measured and esƟmated torque, in addiƟon to the
corresponding normalized error between measured and esƟmated torques. The error in this experiment is
also below 1% validaƟng the accuracy of esƟmaƟon when compared to the actual value.

Figure 14 collects the Ɵme evoluƟons of all the relevant quanƟƟes. It can be seen that error between
reference and esƟmated values varies from less than 10% in the domain of high damping to about 30% for
damping of lowermagnitudes. This is comparablewith the accuracy of the idenƟfied fricƟonmodel in response
to low and high forces.

6 Stabilizing cyclic moƟons in VSA systems

Intrinsic elasƟciƟes in biological and roboƟc mulƟ-body systems enable the execuƟon of highly dynamic and
complex moƟons, such as hiƫng and throwing, or walking and running. The compliant actuator behavior
improves the mechanism robustness during rigid contacts with the environment and increases performance
and energy efficiency. However, the generaƟon of effecƟve and efficient moƟons is not trivial.

In this secƟon, we aim at robustly controlling periodic moƟons for roboƟc systems with Variable SƟffness
ActuaƟon (VSA) [46,1,11]. The idea is to exploit the natural dynamics of these systems and to control them so
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Figure 14: Time evoluƟon of the two coefficients w1 (blue, solid) and w2 (red, dashed) in the polynomial ap-
proximaƟon [top], reference (blue, solid) and esƟmated (red, dashed) damping [center], and the error between
the two [boƩom]

that they are able to robustly handle external disturbances (such as robot-ground contacts) in a similar way as
their biological archetype. The underlying assumpƟon is that these systems feature intrinsically some internal
nonlinear oscillaƟon modes, which correspond to the menƟoned dynamic moƟon paƩerns. The goal is to find
appropriate control strategies, that first enables to idenƟfy and then will excite one of these oscillaƟonmodes.
To this end, we propose two different control approaches.

The first approach, detailed in Sect. 6.1), achieves a desired dynamical behavior by means of a control law
and then decouples the closed-loop dynamics in terms of modal coordinates, constraining the moƟon of the
robot to some invariantmanifold of its state space. Using these dynamic constraints, wewill be able to stabilize
limit cycles along one of the resulƟng oscillaƟon modes, which is as close as possible to the natural dynamics
of the plant.

The second approach, presented in Sect. 6.2), extends the single-input single-output controller introduced
in [25] to the mulƟ-input mulƟ-output case. This is achieved by an adapƟve part which converges to a coor-
dinate transformaƟon of the dominant oscillaƟon mode of the roboƟc plant. The coordinate transformaƟon
is then used to modally distribute the energy input over the joints, thereby increasing effecƟveness in the
excitaƟon of limit cycles.

6.1 Modal decoupling and limit cycle control

The concept of modal decoupling is best introduced by considering first the dynamics of a rigid robot manip-
ulator, i.e.,

M(q)q̈ +C(q, q̇)q̇ + g(q) = τ . (81)

As a maƩer of fact, this model mimics closely the link dynamics (9) of a mulƟ-dof VSA-driven robot. The only
apparent difference is in the right-hand side, where the flexibility torques τ e of the VSA case are replaced here
by the commanded motor torques τ of the rigid case.

StarƟng then with the robot dynamics (81), assume that the following PD control lawwith addiƟonal terms
to compensate for Coriolis/centrifugal and gravity effects is applied

τ = uq +C(q, q̇)q̇ + g(q) +M(q)q̈d −Dd(q) ˙̃q −Kd(q)q̃, (82)
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where q̃ = q − qd is the tracking error with respect to a desired trajectory qd(t), Dd(q) and Kd(q) are
symmetric, posiƟve definite (and possibly diagonal) damping and sƟffness matrices, and we have introduced
an auxiliary control input uq for later use. Note that the impedance controller (82), when uq = 0, is able to
asymptoƟcally track any desired smooth trajectory qd(t). SubsƟtuƟng eq. (82) in (81), leads to the closed-loop
error dynamics

M(q)¨̃q +Dd(q) ˙̃q +Kd(q)q̃ = uq, (83)

To derive the decoupling coordinate transformaƟon for system (83), we invoke a result on the generalized
eigenvalue problem known from matrix algebra, see [15] and [35].

Lemma 1 Given a symmetric and posiƟve definitematrixA ∈ Rn×n and a symmetric matrixB ∈ Rn×n, there
exist a non-singular matrixW ∈ Rn×n and a diagonal matrixBW ∈ Rn×n such thatW−TW−1 = A and
W−TBWW

−1 = B.

If we now apply Lemma 1 toA , M(q) andB , Kd(q), we obtain the transformaƟon

z = W−1(q) q̃ (84)

which maps the joint error coordinates q̃ to the desired modal coordinates z. In order to rewrite system (83)
in modal coordinates, we use the inverse of (84) namely

q̃ = W (q)z. (85)

Based on Lemma 1, the desired damping matrix should be designed in modal coordinates, namely as

Dd(q) = W−T(q)
(
2 diag

{
ξi
√
λi(q)

})
W−1(q) (86)

Here, ξi ≥ 0 are constant, normalized modal damping coefficients, for i = 1, . . . , n.
SubsƟtuƟng (85) in eq. (83), we obtain the modal dynamics

z̈ + 2 diag
{
ξi
√
λi(q)

}
ż + diag {λi(q)} z = W T(q) (uq − γ) (87)

being

I = W T(q)M(q)W (q) (88)

diag {λi(q)} = W T(q)Kd(q)W (q) (89)

γ =
(
M(q)Ẅ (q) +Dd(q)Ẇ (q)

)
z + 2M(q)Ẇ (q)ż. (90)

Using in (87) the control law

uq = W−T(q)uz + γ, (91)

being uz the new control input, we obtain n subsystems in terms of the modal coordinates z:

z̈ + 2 diag
{
ξi
√
λi(q)

}
ż + diag {λi(q)}z = uz. (92)

To prove stability of the homogeneous closed-loop dynamics (92), we consider a posiƟve definite Lyapunov
funcƟon candidate Vi for each decoupled subsystem, and deduce stability if each Ɵme derivaƟve V̇i is negaƟve
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definite, i.e., Vi > 0,∀i ⇒ V =
∑

i Vi > 0, and V̇i < 0,∀i ⇒ V̇ =
∑

i V̇i < 0, ∀(zT żT )T ̸= 0). Thus,
consider the i-th decoupled subsystem

z̈i + 2 ξi
√
λi(q)żi + λi(q)zi = 0. (93)

With the state vector xi = (zi żi)T , a posiƟve definite Lyapunov funcƟon candidate is given by

Vi(xi) =
1
2
xT

i

(
c2 c1/2

c1/2 1

)
xi, (94)

where c1, c2 are posiƟve constants and c2 > c21/4. The derivaƟve of the Lyapunov funcƟon

V̇i(xi, q) = −1
2
xT

i H i(λi(q))xi, (95)

will be negaƟve definite, provided that the matrix

H i(λi(q)) =

(
c1λi(q) λi(q) + c1ξi

√
λi(q)− c2

symm 4ξi
√
λi(q)− c1

)
(96)

is posiƟve definite. We can conclude that the equilibrium point xi = 0 of (93) is asymptoƟcally stable, if the
leading principal minors ofH i(λi(q)) are strictly posiƟve (as funcƟons of q, ∀q ∈ Rn), i.e.,

c1λi(q) > 0, (97)

det (H i(λi(q))) > 0. (98)

The proof of the existence of suitable constants c1, c2, and a comprehensive analysis of the corresponding
stability region are provided in [23].

In the following, we show how to produce an asymptoƟcally stable limit cycle for the generic k-th decou-
pled system in (92). Seƫng ξk = 0 and dividing by λk(t) > 0 (posiƟvity holds ∀t), the system becomes

1
λk(t)

z̈k + zk =
1

λk(t)
uzk

, (99)

with state (zk żk)
T ∈ R2. Similarly to what was done in [10], consider the scalar funcƟon

H (t, zk, żk) =
1

2λk(t)
ż2
k +

1
2
z2
k ≥ 0, (100)

with Ɵme derivaƟve along the trajectories of (99)

Ḣ (t, zk, żk) =
1

λk(t)
uzk

żk −
λ̇k(t)

2λk(t)2
ż2
k. (101)

Choose the input as

uzk
= λk(t)

(
−kV H̃ (t, zk, żk) żk +

λ̇k(t)
2λk(t)2

ż2
k

)
, (102)

where kV > 0, H̃ (t, zk, żk) = H (t, zk, żk)−Hd andHd > 0, such that the derivaƟve ofH (t, zk, żk) results
in

Ḣ (t, zk, żk) = −kV H̃ (t, zk, żk) ż2
k. (103)

The system (99), unlike the one considered in [10], is non-autonomous and so we cannot apply directly La
Salle’s theorem. Nevertheless, with a similar argument, we can prove that it has an asymptoƟcally stable limit
cycle Ω = {zk, żk |H (t, zk, żk) = Hd}. It remains to show stability and aƩracƟveness of this limit cycle.
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Uniform stability Choosing as Lyapunov funcƟon the conƟnuously differenƟable funcƟon

V (t, zk, żk) =
1
2
H̃ (t, zk, żk)

2 , (104)

with

• V (t,Ω) = 0

• S1 (zk, żk) ≤ V (t, zk, żk) ≤ S2 (zk, żk)

• V̇ (t, zk, żk) = −kV H̃ (t, zk, żk)
2 żk

2 ≤ 0

∀t ≥ 0 and ∀ (zk, żk) ∈ R2, and where

S1 (zk, żk) =
1
2

(
1

2λk,max
ż2
k +

1
2
z2
k −Hd

)2

S2 (zk, żk) =
1
2

(
1

2λk,min
ż2
k +

1
2
z2
k −Hd

)2

are posiƟve definite funcƟons on R2, we can conclude that Ω is uniformly stable.

AƩracƟveness AƩracƟveness is proven using Barbalat’s lemma (see, e.g., [43]). We have already shown that
V (t, zk, żk) is bounded from below and that V̇ (t, zk, żk) is negaƟve semidefinite. In order to apply Barbalat’s
lemma, it remains only to show that V̈ (t, zk, żk) is bounded. This follows from

V̈ (t, zk, żk) = −2kV H̃ (t, zk, żk)
2 (kV żk + żkz̈k) ,

which is bounded since (99) is stable. So, we conclude that limt→∞ V̇ (t, zk, żk) = 0. Let Bϵ (Ω) be a neigh-
bourhood ofΩ, such that (zk = 0, żk = 0) /∈ Bϵ (Ω). SinceΩ is stable, we can choose the iniƟal condiƟon such
that the soluƟon remains always in Bϵ (Ω). Moreover, we have shown that either żk → 0 orH (t, zk, żk) →
Hd as t→∞, but since the system cannot converge to (zk ̸= 0, żk = 0) and (zk = 0, żk = 0) /∈ Bϵ (Ω) then
we conclude that the soluƟon can only converge to Ω = {zk, żk |H (t, zk, żk) = Hd}.

The last step of our applicaƟon is the extension to the case of VSA-driven mulƟ-dof robots, as modeled by
eqs. (9–11). We will do so by deriving a controller that is able to track any desired flexibility torque τ e,d, using
the basic concept of decoupling the flexible joint torque dynamics from the dynamics of the joint posiƟon.
The approach was proposed in [34] for the case of robots with constant joint sƟffness, but allows a rather
straighƞorward extension to the VSA case.

Consider the inversion of the flexibility torque funcƟon ψ in (11)

θ − q = ψ−1(τ e).

Rearranging and differenƟaƟng twice w.r.t. Ɵme yields

θ̇ = q̇ +
∂ψ−1(τ e)
∂τ e

τ̇ e, θ̈ = q̈ +
∂ψ−1(τ e)
∂τ e

τ̈ e +
d

dt

(
∂ψ−1(τ e)
∂τ e

)
τ̇ e. (105)

SubsƟtuƟng the acceleraƟon θ̈ in the motor equaƟon (10) leads to

B

(
∂ψ−1(τ e)
∂τ e

τ̈ e +
d

dt

(
∂ψ−1(τ e)
∂τ e

)
τ̇ e

)
+ τ e = τ −Bq̈. (106)
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If a desired flexibility torque profile τ e,d(t) has to be tracked at the joints, then the control input τ ∈ Rm will
be chosen as

τ = τ e,d +Bq̈ +B
d

dt

(
∂ψ−1(τ e)
∂τ e

)
τ̇ e +B

∂ψ−1(τ e)
∂τ e

(τ̈ e,d +Dτ ėτ +Kτeτ ) , (107)

where eτ = τ e,d − τ e is the control error and Kτ , Dτ are symmetric and posiƟve definite gain matrices.
Note that the link acceleraƟonq̈ required in (107) can be obtained from (9), since the flexiblity torques τ e can
be measured by a joint torque sensor. The control error dynamics becomes

ëτ +Dτ ėτ +

(
Kτ +

(
∂ψ−1(τ e)
∂τ e

)−1

B−1

)
eτ = 0, (108)

showing that asymptoƟcal stability of eτ can be achieved by proper tuning of the control gains.
As a result, the modal limit cycle dynamics can be implemented for the VSA system (10)–(11) by simply

plugging as τ e,d in (107) the right hand-side of eq. (82), in which (91) and (102) are also used.

6.2 Modal adapƟve bang-bang control

Our goal here is to control periodic moƟons of the link posiƟon coordinates q ∈ Rn in a VIA-driven robot using
the bang-bang control introduced in [25]. Since that controller accounts only for scalar quanƟƟes, we seek a
transformaƟon such that the moƟon q(t) can be represented by a single coordinate, for instance, y1(t). The
basic idea can be explained in the context of differenƟal geometry (see also the sketch in Fig. 15(a)).

Consider the Ɵme series of joint posiƟons q(t) represenƟng the moƟon of the mulƟ-joint robot, where
q ∈ Q ⊂ Rn are coordinates of a manifold Q. Assume that we can represent the trajectory q(t) on a lower
dimensional manifold Y , with coordinates y ∈ Y ⊂ Rp, with p ≤ n (in parƟcular, for the present case of
bang-bang control, we will require p = 1). Assume further that this reducƟon mapping

y = F (q,W ) (109)

can be parameterized by constant weightsW , and that the inverse mapping

q = G(y,W ) (110)

also exists. Then, similar to what done in [20], we can define an error funcƟon for the composiƟon of the
reducƟon mapping and of its inverse (also called the auto-associaƟve mapping)

S = ∥q(t)− (G ◦ F ) (q(t),W )∥2 . (111)

For a perfect reconstrucƟon mapping, the sum of error funcƟons evaluated at each point of the trajectory
q(t) must be idenƟcally zero. In general, this leads to a nonlinear opƟmizaƟon problem, where the matrix of
weights Ŵ represents the opƟmal soluƟon.

To clarify themeaning of the reducƟonmapping (109) in a simple case, consider a linear, second-order and
non-dissipaƟve mechanical system in free evoluƟon

Mq̈ +Kq = 0, (112)

whereM ,K ∈ Rn×n are constant, symmetric, and posiƟve definite matrices. Using the eigenvectors ŵi ∈
Rn of the matrix1 A := K−1/2MK−1/2, where ŵi are normalized so that ŵT

i ŵj = δij (the Kronecker
delta), the moƟon of the system (112) can be expressed as

q(t) = ŵ1y1(t) + ŵ2y2(t) + . . .+ ŵnyn(t), (113)

1The matrix A results from the coordinate transformaƟon q = K−1/2z, i.e., z̈ + Az = 0, with A being sƟll symmetric and
posiƟve definite. The eigenvectors ofA are related to the generalized eigenvectors ofK ,M [16, chap. 4.5].
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(a) The basic idea of the modal
transformaƟon

(b) Local approximaƟon of the
modal transformaƟon

Figure 15: Manifold interpretaƟon of modal transformaƟons

where yi(t) = âi sin(ωit− ϕi) are Ɵme modulaƟons of the eigenmodes corresponding to moƟons along ŵi.
Hereby, âi are amplitudes, ωi eigenfrequencies and ϕi phase angles. From (113) it can be seen that

q =
∑

i

wiyi, (114)

where wi ∈ Rn are parameters of the mappings (114) and q ∈ Rn and yi ∈ R represent the instantaneous
values of the trajectory q(t) and yi(t), respecƟvely. Due to orthogonality ofwi, the modal reducƟon mapping
has the form

yi = wT
i q. (115)

With the above in mind, we can derive an adapƟve law for the linear system (112), so as to learn the true
parameters wi of the mapping (115) under the assumpƟon of unknown (or uncertain)K andM . Assume
that we measure a new value of the actual joint posiƟon q(k) = q(tk) (with tk = kTs) at each discrete-Ɵme
sample k. Consider further the error funcƟon

S =
1
4

∥∥∥∥∥q(k)−∑
i

wiw
T
i q(k)

∥∥∥∥∥
2

, (116)

which represents the squared distance between the input q(k) and the auto-associaƟve mappingwiw
T
i q(k)

obtained composing the reducƟon mapping (115) and the inverse mapping (114). Then, the gradient descent
rule for minimizing S is

w̃i(k) = w̃i(k − 1)− γ ∂S(q(k),wi(k − 1))
∂wi

, (117)

where γ > 0 determines the convergence rate and

∂S(q(k),wi(k − 1))
∂wi

= −yi(k) (q(k)− yi(k)wi(k − 1)) . (118)

The algorithm (117–118) minimizes the error funcƟon (116) recursively, and provides a new guess w̃i ∈ Rn

at each sample k (note that yi(k) = wT
i (k − 1) q(k)). However, since the algorithm does not enforce the

needed orthonormality of the weights w̃i, we incorporate in the iteraƟon a Gram-Schmidt orthogonalizaƟon
(see, e.g., [16, chap. 0.6]) from w̃i(k) to w̄i(k)

w̄i(k) = w̃i(k)−
∑
j<i

wT
j (k − 1) w̃i(k)wj(k − 1).
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and a successive normalizaƟon from w̄i(k) to the final outputwi(k) at step k

wi(k) =
(
w̄T

i (k) w̄i(k)
)−1/2

w̄i(k).

Assuming that γ ≪ 1 and neglecƟng terms of orderO(γ2), we obtain the learning rule proposed by [33]:

wi(k) = wi(k − 1) + γ yi(k)
(
q(k)− yi(k)wi(k − 1)− 2

∑
j<i

yj(k)wj(k − 1)
)
. (119)

The p dominant eigenvectors ŵ1, . . . , ŵp of the data covariance matrixC = E{QQT } (of expected val-
ues), where Q = (q(1), . . . , q(k)) ∈ Rn×k, represent asymptoƟcally stable fixed-points of the difference
equaƟon (119) (for a proof, see [32,39]). For the linear mechanical system (112), the eigenvectors ŵ1, . . . , ŵp

of the data covariance matrixC are related to the oscillaƟon modes, i.e., ŵi are eigenvectors of the matrixA
that are represented in the parƟcular moƟon considered. Moreover, in the presence of damping, the eigen-
vectors of matrixC approximate the eigenvectors of the resonant modes (for more details, see [5]).

To move out of the simple linear mechanical system (112) and consider the full nonlinear dynamics of
the links of a mulƟ-dof robot system (either with rigid joints and convenƟonal actuaƟon, or driven by VSA
units —the treatment is similar, as shown in Sec. 6.1), the noƟon of eigenmodes for linear systems might be
replaced by so-called nonlinear normal modes [42]. For the present approach, we assume that the dominant
mode is synchronous in amplitudes (i.e., the oscillaƟons of the joints are in phase), so that themoƟon along this
mode can be represented by a single curvilinear coordinate. Therefore, when the algorithm described by (119)
converges sufficiently fast, the weight vector wi(k) locally approximates the instantaneous linearizaƟon of
the nonlinear normal mode. This is sketched in Fig. 15(b). Finally, it is worth menƟoning that the order of
the weight vectors wi(k) depend on the parƟcular moƟon q(k), which the only informaƟon source of the
adaptaƟon algorithm. The first weight vector w1 corresponds to the most dominant principal component of
the trajectory q(k), i.e., to the eigenvalue of the matrixC with the largest magnitude.

With the above tools and analysis in mind, assume that we want to excite periodic moƟons around a ref-
erence motor posiƟon θ0 ∈ Rm. Consider the PD control

τ = −KDθ̇ −KP (θ − θd) , (120)

where KD,KP ∈ Rm×m are symmetric and posiƟve definite control gain matrices, and θd ∈ Rm is the
desired motor posiƟon for the VSA robot system (9–11), which is taken here as a tunable control input. Then,
usingw1 ∈ Rm provided by the adaptaƟon algorithm (119), we can compute the following bang-bang control
in the direcƟon of the first mode:

∆θz(τz) =

{
sign (τz) θ̂z, if |τz| > ϵτz

0, otherwise.
(121)

Herein,

τz = wT
1

((
∂Ue(θ, q)

∂θ

)T

−
(
∂Ue(θ, q)

∂θ

)T
∣∣∣∣∣
θ=θ0

)
∈ R (122)

is the generalized force acƟng in the direcƟon of the first mode, the posiƟve scalar ϵτz is the corresponding
threshold, and θ̂z ∈ R is the modal switching amplitude. Finally, the control input θd in (120) will be adapted
as

θd = θ0 + ∆θ. (123)

In this way, we can interpret ∆θz(τz) ∈ R as a tangent vector to the modal manifold which transforms with
the Jacobianw1 of the inverse reducƟon mapping (114), i.e., ∆θ = w1∆θz(τz).
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6.3 Experimental results

Themodal decoupling control presented in Sect. 6.1was tested on the first four VSA joints of the DLRHand Arm
System. The limit cycle controller has been applied either to excite the first or the second mode. Figure 16
shows pairs of plots in the (posiƟon/ velocity) phase plane of the modal and joint moƟon in four different
cases. In Fig. 16(a-b), the joint sƟffness was preset at the minimum values, while in (c-d) the joint sƟffness was
increased to half of its maximum feasible value. In both cases, only the first mode moƟon (blue lines in (a) and
(c)) approaches asymptoƟcally the limit cycle, while the remaining modes stay around the origin. In terms of
joint moƟon, the first and the fourth link are those mainly involved (plots blue and magenta in (b) and (d)). In
Fig. 16(e), the second mode undergoes cyclic moƟon (in green) and this involves the moƟon of all four joints
(f). In order to induce all these limit cycle moƟons, the controlled robot arm was manually pushed from an
iniƟal configuraƟon (different for the first and second modes). Finally, the aƩracƟve behavior of the limit cycle
can be observed in Fig. 16(g) and 16(h), respecƟvely on the modal and joint moƟon. In this case the robot
end-effector has been stopped and then released by hand. AŌer this disturbance, the moƟon converges back
to the limit cycle.

(a) First mode moƟon (b) Joint moƟon (c) First mode moƟon (d) Joint moƟon

(e) Second mode moƟon (f) Joint moƟon (g) Modal moƟon (h) Joint moƟon

Figure 16: Phase plots of modal and joint moƟon in the experimental validaƟon of the modal limit cycle con-
troller for a VSA roboƟc arm (the first four joints of the DLR Hand Arm System)

The modal adapƟve bang-bang control of Sect. 6.2 was tested in a hiƫng experiment with the DLR Hand
Arm System, see Fig. 17(a). As shown in Fig. 17(b), the controller is able to stabilize with this control law a
periodic hiƫng robot moƟon in the presence of mulƟple repeated environmental contacts. AŌer the iniƟal
disturbance, moƟon in the y and z direcƟons approaches a periodic steady state within one oscillaƟon cycle.

Finally, to illustrate the adaptability of the control approach, we have performed also some simulaƟons for
a roboƟc systemwith hybrid dynamics and compliance. For the planar legged robot driven by Serial ElasƟc Ac-
tuators (SEA) shown in Fig. 18(a), an open-loop sinusoidal excitaƟon and the modal adapƟve feedback control
are compared in Fig. 18(b). In the laƩer case, the frequency of the verƟcal oscillaƟon of the trunk converges
to the frequency of the task. More simulaƟons are provided in [24].
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(a) Hardware set-up (with characterisƟc of the springs in the joints)

(b) Cartesian moƟon of the end-effector (in blue) and controlled behavior of
the desired motor posiƟons θd

Figure 17: Bang-bang modal adapƟve control in a hiƫng experiment with the DLR Hand Arm System
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(a) Technical sketch of a planar system with two legs
(f = front, r = rear)

(b) Feedforward sinusoidal excitaƟon (leŌ) andmodal adapƟve bang-bang control (right)
for cyclic hopping moƟon

Figure 18: SimulaƟon results for a planar legged system with compliant actuaƟon
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7 OpƟmal control for maximizing link velocity of visco-elasƟc joints

During the first two years of the project, several results have been obtained by the partners on the opƟmal
control of single-dof and mulƟ-dof robot systems, including various form of compliance at the joints (constant
elasƟcity, SEA, VSA, and so on) and considering different objecƟve funcƟons. Early results were summarized
already in the form of a milestone (MS3 OpƟmal control of modular VSA manipulators) reached at the end of
month 12, while further developments have been presented in scienƟfic papers at conferences and submiƩed
to journals. It is then appropriate to conclude the present document on the control of compliant robots with
just one of the latest obtained technical results on this subject.

Twomajor properƟes of compliant actuators are the ability to absorb shocks, and to store potenƟal energy
in the elasƟc elements. The laƩer can be used to realize explosive moƟons, as those observed in humans [14].
ConcentraƟng on this second advantage of purely elasƟc joints, we have invesƟgated the role and influence of
mechanical damping in visco-elasƟc joints on the opƟmal control soluƟon. In parƟcular, we refer to the simple
benchmark shown in Fig. 19 . and to the problem of reaching with this 1-dof system the maximum possible
link velocity at a given terminal Ɵme tf .

 

Figure 19: 1-dof visco-elasƟc Joint

ActuaƟon models of increasing complexity have been considered with the purpose of geƫng more insight
about the influence of a constant joint damping on the opƟmal control policy for explosive moƟon tasks. In
order to obtain analyƟcal results, we started first by analysing a simple velocity-controlled motor model. The
problem of maximizing the link velocity can be formulated mathemaƟcally as an OpƟmal Control problem
having just a terminal cost component to mbe minimized (at Ɵme tf )

J = −q̇(tf ). (124)

A soluƟon to this problem had already been found in the case of undamped elasƟc joints: The opƟmal con-
trol strategy is bang-bang and periodic with the system’s eigenfrequency ω =

√
KJ/M . By addressing the

modified problem for visco-elasƟc joints we wanted to reveal the effect of damping on the structure of this
nominal opƟmal strategy and to see whether the maximum link velocity would remain bounded by leƫng tf
go to infinity in the cost funcƟonal (124).

Pontryagin’s Maximum Principle has been the main mathemaƟcal tool used to obtain analyƟcally opƟmal
soluƟons for simple motor models. On the other hand, for more complex models and cases, we resorted
to the numerical opƟmizaƟon soŌware GPOPS. Whenever possible, numerical results were also validated in
comparison with analyƟcal results. The theoreƟcal findings show that the opƟmal control for under-damped
joints is again periodic, but is now tuned with the system’s damped eigenfrequency ωd = ω

√
1−D2, where

D is the damping raƟo. IncreasingD leads to an increased period for the opƟmal control law, but only unƟl the
damping raƟo is below unity. For criƟcally damped and over-damped joints, the opƟmal control is no longer
periodic and must switch once when a sufficiently large final Ɵme is allowed.

Having determined this opƟmal strategy, we looked at the behavior of the maximum link velocity q̇max(tf )
as tf increases. While increasing the final Ɵme always increases the final achieved link velocity, this increase
is bounded and a maximum bound on the link velocity can be found. Figure 20 illustrates the dependence of
this bound by ploƫng the performance index ϵ(n,D), defined as the raƟo of the maximum link velocity q̇max

to the maximum motor velocity θ̇max, in terms damping raƟosD, as well as for different motor switchings n.
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Figure 21: OpƟmal control results for a visco-elasƟc joint with different motor models

For the velocity-controlled model, we could also show theoreƟcally that a direct relaƟon exists between
the system co-states and the obtained link velocity. This is given by the integral

q̇(tf ) = −
∫ tf

0
σ∗(ξ) θ̇(ξ) dξ, (125)

where σ∗ is the switching funcƟon, which is expressed as a linear combinaƟon of the system co-states. One
advantage of having a valid formula like (125) is the possibility of analyzing the influence of motor velocity
on the achieved link velocity along the whole trajectory. Remarkably, the above formula holds for any of the
chosen motor models. We can thus interpret the control strategies computed numerically for more complex
motor models having acceleraƟon or torque as input by using (125), and in parƟcular the switching funcƟon
σ∗, see Figure 21. Further analyƟcal and numerical results are contained in the submiƩed paper [36].
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