XXSAPHARl

SAFE AND AuTONOMOUS PHYsIcAL HUMAN-AWARE [ROBOT INTERACTION

* ¥ x
* COGNITIVE *
* SV'S;EMS *
* ROBOTICS *
&*J

SEVENTH FRAMEWORK
PROGRAMME

Project funded by the European Community's 7th Framework Programme (FP7-1CT-2011-7)
Grant Agreement ICT-287513

Deliverable D7.4.1

Planning of smooth motion-force transition tasks

Deliverable due date: 31 December 2013 Actual submission date: 15 January 2014
Start date of project: 1 November 2011 Duration: 48 months
Lead beneficiary: UNIROMA1 Revision: Final
Nature: R Dissemination level: PU
R = Report PU = Public
P = Prototype PP = Restricted to other programme participants (including the Commission Services)
D = Demonstrator RE = Restricted to a group specified by the consortium (including the Commission Services)
O = Other CO = Confidential, only for members of the consortium (including the Commission Services)

www.saphari.eu

ICT-287513 SAPHARI Deliverable D7.4.1

Executive Summary

This deliverable of work package WP7 deals with a relatively novel problem, namely planning the motion of
an articulated robot that needs to execute a task involving the hybrid specification of feasible motion (i.e.,
compatible with robot kinematic and dynamic constraints, and avoiding collisions with environment obstacles)
as well as of desired interaction forces (to be exchanged with environment surfaces at selected locations where
the robot is in contact).

Hybrid force/motion is indeed a well-established topic in the robot control literature, but the existing con-
trol techniques are only able to deal with local decisions and constraints, and miss the generality of the above
formulation (e.g., they cannot guarantee a collision-free motion consistent with the global task, even if one
exists). On the other hand, motion planning techniques generate complete solutions in known environments,
but do not address tasks with dynamic exchanges of forces/torques, especially when these need to be executed
in parallel or in sequence with long range motion tasks.

The algorithmic solution developed within SAPHARI consists in a novel extension of a framework called
Task-Constrained Motion Planning (TCMP) that combines control-oriented techniques (path tracking, use of
the Jacobian null-space in the presence of redundancy, consideration of robot dynamics) to guarantee accuracy
and efficiency, with state-of-the-art methods in randomized motion planning (like RRT, suitably modified) to
handle the complexity of large but cluttered search spaces.

The class of considered problems includes also specific SAPHARI requirements such as smooth transition
from free-space motion to contact situations and vice versa, inclusion of human-aware constraints and ob-
jectives in the planning cost, moving obstacles, consideration of manipulators mounted on mobile bases, in-
clusion of robot velocity, acceleration, or torque limits, possibly varying along the task execution, and so on.
All of these features can be addressed by the proposed numerical method, which is here illustrated on two
representative case studies.

The approach is currently being tested also on one of the scenarios of the KUKA use case, namely for the
planning of fetch and carry of parts by a commissioning mobile manipulator helping operators in assembly
tasks. The present work interfaces on one side with the higher-level task planning methods developed in T7.2-
T7.3 of WP7, and provides on the other side nominal motion-force references for the interaction controllers
of T3.4 in WP3.

E,ZSAPHAW Page 1 of

ICT-287513 SAPHARI Deliverable D7.4.1

Table of contents

i [y o Yo IV ot n o] o AR 3

|2 Problem formulation| ... 3
|2.1 Robot constraintsl ... 3
|2.2 Motion-force task deﬁnition| ... 4
|2.3 Planning problem| ... 4

|3 The case of pure motion tasksl ... 5
|3.1 Task-Constrained Motion Planning (TCMP)| ... 6
|3.2 TCMP problem formulation| .. 6
|3.3 Extensions: cyclicity and moving obstacles| ... 8

|4 Extending to general tasks| .. 11
L 2 7= Yol €4 o 10T Vo | PP 11
|4.2 Motion generationl .. 12
|4.3 The complete pIannerI ... 14

I5 Smooth transitions between CONSECULIVE TASKS|................c.orveieriiiriesiieseeteseseeseseseeses e s, 15

|6 Planning experiments| .. 15

EEXSAPHARI Page 2 of

ICT-287513 SAPHARI Deliverable D7.4.1

1 Introduction

In the real world, robotic systems are usually assigned tasks that are more general than pure motion tasks.
A typical robotic application, may it be in an industrial or in a service context, will often involve contacts and
interactions with humans and/or with the environment. For such applications, the motion planning problem
must be described considering the presence of hybrid motion-force tasks.

Hybrid tasks have been most often considered in literature from the control point of view, while very few
works have been proposed in the past to handle these tasks in a planning context. In this document, we
describe a novel motion planning algorithm that is precisely designed to address hybrid tasks, in addition to
guaranteeing satisfaction of constraints intrinsic to the specific robot (position, velocity and torque limits at
the joints) as well as avoidance of workspace obstacles, fixed or moving.

One important aspect of hybrid motion-force tasks is that they are typically intermittent in nature; i.e., they
are composed by sequences of motions in free space and motions in contact with the environment. At the
transition points, where contact is established or abandoned, it is necessary to guarantee some smoothness
conditions to avoid undesirable impact forces or sudden transient errors. The proposed planner is able to
comply with these conditions in a natural way.

To illustrate the performance of the proposed motion planning algorithm, some results are presented for a
scenario involving a KUKA LWR manipulator executing a hybrid task that involves both free motion and motion
in contact with a planar surface.

2 Problem formulation

For a generic robotic system, let g be a n,-dimensional vector of generalized coordinates representing the
robot configuration, and C be the configuration space. We denote by & = C x T C, the n, x n, robot state
space, where Tgq C is the tangent space of C at g, and by WV the subset of IR? or IR? representing the robot
workspace.

In the general formulation of the problem, we assume that the workspace is populated by fixed and mov-
ing obstacles. Denote by R(q) € W and O(t) C W, respectively, the volume occupied by the robot at
configuration g and by all the obstacles at time ¢. Throughout the rest of the document, it is assumed that
O(t) is known for all ¢; i.e., that the obstacle motion is fully predictable. The assumption that the trajectories
of the moving obstacles are known in advance is a first step towards the solution of more realistic problems
with reduced predictability levels of obstacle motion. Note that there exist scenarios or fields of applications
in which this assumption is actually verified. This is true, for example, in some industrial robotics applications,
or in the animation of digital characters.

2.1 Robot constraints

In a planning problem, we must also take into account a number of limitations intrinsic to the considered robot.
Constraints that are invariably present in robotic systems are position constraints (joint limits), kinematic con-
straints (velocity limits) and dynamic constraints (torque limits). The first two are expressed as upper bounds
on the absolute value of joint positions and velocities

whereas dynamic constraints limit the available actuator generalized forces 7 (henceforth simply referred to
as torques):
7| < Tm. (2)

We call feasible a trajectory in g(t) in C that satisfies constraints l .

E,ZSAPHAW Page 3 of

ICT-287513 SAPHARI Deliverable D7.4.1

2.2 Motion-force task definition

We assume that the robot is assigned a general task that prescribes the motion of a specific point of the
kinematic chain (typically, the end-effector) as well as the forces/moments that the robot exchanges with the
environment. In the following, we call this a motion-force task for brevity. Note that the existence of a force task
implies that the motion task brings the robot in contact with one or more surfaces belonging to the boundary
of the obstacle region, at least for part of the motion.

Denote by y the motion task coordinates, which take values in an n,-dimensional space)/, and by f the
force task coordinates, which take values in an n-dimensional task space F (remember that f may include
moments).

The motion task coordinates y are related to the generalized coordinates q by the forward kinematic map

Y= k(q)7 (3)

whose differential version is
Yy =J(q)q, (4)

with J = 0k/0q the n, x n, motion task Jacobian matrix.
Relating the force task coordinates f to the trajectory in configuration space requires the consideration of
the dynamic model of the robot in the Lagrangian form:

B(q)g+mn(q.q)=7—J"(q)f. (5)

Here, B(q) is the inertia matrix, n(q, ¢) collects velocity and gravitational terms, and J7 (q) f is the portion
of the actuator torques T needed to balance the torques induced at the joints by the contact force f. Note
that we are implicitly assuming that the contact with the environment takes place at the same point (e.g., the
end-effector) where the motion task coordinates y are defined. However, this assumption does not involve any
loss of generality, because it may be easily removed by considering different Jacobian matrices in (4) and .

Then, the assigned motion-force task consists of a desired motion path y,(s) € Y for the motion task
variables y and a desired force path f,(s) € F for the force task variables f, where s € [s;, sf] is a path
parameter. A typical choice for s is the arc length along the motion task path. Note that a desired force f;(s)
may only be specified for those values of s at which the motion task puts the robot in y,(s) contact with the
environment; this may happen throughout the task or intermittently, depending on the considered application.
At those values of s where the robot is not in contact with the environment, we assume f(s) = 0. In this case,
eq. (5) indicates that the actuator torques are converted in pure motion. Finally, note that the the motion-force
task can be specified directly as a trajectory; in this case, s = t.

2.3 Planning problem

At this point, we are ready to formulate our planning problem, which consists in finding a feasible configuration
space trajectory (i.e., one over which joint, velocity and torque limits are satisfied) such that the assigned
motion-force task is executed and collisions with obstacles are avoided. Clearly, for the planning problem to
be well-posed, we must take the assumption that the robot is redundant with respect to the assigned motion-
force task, i.e., ng > ny +ny.

In the proposed framework, a solution to this problem is built as the composition of three parts: a configu-
ration space path, representing the geometric part of the solution, a time history along the path, and a torque
profile along the resulting trajectory.

More precisely, a solution consists of a path {g(s) € C, s € [s;,sy], a continuous time history s(t) :
[0,T] = [s4, s¢], and a torque profile 7(¢), t € [0, 77, such that :

1@5APHAR| Page 4 of

ICT-287513 SAPHARI Deliverable D7.4.1

1. 5(0) = s; and s(T) = s;

2. forallt € [0,T),itis y(t) = k(q(s(t))) = ya(s(t));

3. forallt € [0,T),itis f(t) = fq(s(t));

4. q(0) = ¢, q(0) = q;, 4(T) = qy;

5. forallt € [0,T7],itis |[q(t)| < qu, |a(t)| < qppand |7(2)| < 7ar;
6. forallt € [0,T],itis R(q(s(t))) NO(t) = 0;

Requirement 1 simply state that the robot motion must start and stop on the endpoints of the task path
y4(si) and y,(sy) respectively. Together with continuity, this guarantees that all values of s € [s;, s¢] are
generated. Requirements 2 and 3 guarantee that motion-force tasks are satisfied at any configuration of the
solution trajectory. Requirement 4 establishes that the robot matches the initial configuration and initial and
final velocities (typically zero). Requirement 5 allows to satisfy joint position, velocity and torque bounds.
Finally, last condition requires to avoid collisions with the obstacles (self-collisions can be tested as well).

Some further explanation is in order with respect to requirement 3 above. Differently from the motion
task variables y(¢) in requirement 2, the value of the force task variables f(¢) at time ¢ cannot be expressed as
a pure function of the configuration q(t). Indeed, eq. (5) entails that f(¢) results from the part of the actuator
torques 7 that is not converted into motion; i.e., it is a function of 7(¢), g(¢), g(t) and g(t). Since this function
cannot be written in closed form, the planner will satisfy the force task constraint using a different mechanism
than the motion task constraint. In particular, it will explicitly generate the joint torques that will drive the
robot so as to realize the desired motion-force task. These joint torques will then be explicitly included in the
solution.

Note the following facts.

e In the general case s # t, the time history s(¢) is not required to be non-decreasing: s must start at
s; and end at sy, but it is not required to be monotonic along the trajectory. This means that, at any
point along the path, s may increase (forward motion), remain constant (self-motion) or even decrease
(backward motion), if these maneuvers are useful for avoiding moving obstacles. In other words the
assigned y,(s), s € [s;, s¢], will only be the ‘footprint’ of the motion, whereas the actual motion y,(1),
t € [0,T7], will depend on the choice of s(t).

e Theinitial configuration g, is assumed to be given. If this is not the case, a suitable g; may be preliminarily
computed by inverse kinematics.

e The final configuration g(sy) = q(T') and (if s # t) the total duration 7" of the motion are not assigned,
and will be generated by the planner.

3 The case of pure motion tasks

To fully understand the structure of our planner for the general case of motion-force tasks, it is convenient to
start from the simple case of a pure motion task. This will allow us to introduce the basic tools that will also
be used in the general case.

E,ZSAPHAW Page 5 of

ICT-287513 SAPHARI Deliverable D7.4.1

task constraint

Figure 1: Leaves of the task-constrained configuration space Ci,sk, decomposed as a foliation.

3.1 Task-Constrained Motion Planning (TCMP)

Task space constraints invariably arise in the practical operation of robotic systems, both in service and in-
dustrial applications; examples include opening a door, transporting an object, cooperating with other robots,
executing a given end-effector trajectory for drawing, cutting or welding, tracking a visual target. Kinematically
redundant robotic systems, such as humanoids and mobile manipulators, possess the dexterity for accomplish-
ing these tasks while pursuing additional objectives, among which the most important is obstacle avoidance.
In the base formulation of the planning problems here addressed we consider the presence of pure motion
tasks and fixed obstacles only. The motion planner must generate robot motions that satisfy the task space
constraints while guaranteeing that the robot body does not collide with parts of itself (self-collision) or with
workspace obstacles. In the following, this problem is referred to as Task-Constrained Motion Planning (TCMP).

Our solution to the TCMP problem relies on the principle of control-based motion planning [1]], a paradigm
where configuration samples are generated using a differential model of the robot (called motion generation
scheme in the following). In particular, in [2] a motion generation scheme was introduced that is able to guar-
antee continued satisfaction of the constraints. The use of this scheme leads to a sampling-based randomized
planner that achieves accurate execution of the task without increasing the size of the roadmap.

3.2 TCMP problem formulation

With reference to the previous problem formulation for the general case, assume now that the assigned task
consists only of a motion task. That is, a desired path is assigned for the task variables y in the form y (o),
with o € [0, 1], w.l.o.g, and that y,(o) is differentiable. For the problem to be well-posed, we assume that:

Yq(o) € T Vo € [0,1], (6)

where 7* C 7 is the non-singular task space, defined as the set of regular and co-regular task space points.
The workspace W is assumed to be populated by fixed obstacles only.

In the above hypotheses, the Task-Constrained Motion Planning (TCMP) problem consists in finding a con-
figuration space path q(s),s € [s;i, sf], and a surjective, non-decreasing mapping o(s) : [si,sp] — [0,1]
such that:

'We use different parameterizations for Yy, and g to take advantage of the possibility of performing self-motions or backward
motions.

EQ,TSAPHAW Page 6 of

ICT-287513 SAPHARI Deliverable D7.4.1

Figure 2: Possible extensions of the tree from the node q.

1. y(s) = k(g(s)) = ya(o(s)), Vs € [si, s5] (see equation (3));
2. the robot does not collide with obstacles or with itself.

The planning space for the TCMP problem is
Ciask = {q € C : k(q) = y4(o) forsome o € [0,1]}. (7)

The manifold Cias, that we call task-constrained configuration space, has naturally the structure of a foli-
ation (see Fig. . Its generic leaf is defined as

L(o) ={qeC:k(q)=1yy(0)}. (8)

Clearly, the existence of a solution to the TCMP problem is determined by the obstacle placement, and in
particular by the connectivity of Ciask N Ciree, the portion of the free configuration space that is compatible with
the task path constraint.

Our control-based randomized planner builds a Rapidly exploring Random Tree (RRT, see [3], [4]) in the
task-constrained configuration space Cy,s to search for a collision-free path. For the construction of the tree,
we make use of samples of the desired task path y;(o); in particular, denoting by {o1 = 0,02, ...,0n_1,0N8 =
1} an equispaced sequence of N path parameter values, let y, = y,(k) (we drop the d subscript for com-
pactness). The tree edges are collision-free subpaths obtained by applying the following motion generation
scheme:

qg = v (9)
v = J(q)(y+kee)+ (I —TN(q)T(q))w, (10)

where JTisthe pseudoinverse of the task Jacobian J, k; is a positive gain, e; = y,;—vy isthe taskerror, I-Jtg
is the orthogonal projection matrix in the null space of J, and w is an arbitrary n,-vector that represents a
residual input. One has Jt= JT(JJT)*1 when J is full row rank; in our planner, this assumption is always
satisfied because singular configurations are discarded. Use of the above scheme guarantees e, = —k ey, i.e.,
exponentially stabI tracking of the desired task path, regardless of the choice of w.

2Since this is a planning scheme, stability is required for reducing the drift associated to a numerical integration of @ .

1@5APHAR| Page 7 of

ICT-287513 SAPHARI Deliverable D7.4.1

For any choice of w(s), s € [0, 1], and starting from a generic leaf of Cy,s, integration of provides
a configuration path that starts from the current leaf and traverses subsequent leaves, always remaining in
Crask- A numeric solver can be used to actually perform the integration. Taking advantage of the different
parameterizations of the task space and the configuration space paths, one may also perform a motion on the
same leaf (self-motion) or even move backwards from the current leaf towards previous leaves. In formulas:
y/ — % — % . dﬁ (11)
47 ds do ds
where, for do/ds = 1/0/ — 1 we obtain, respectively, forward, self- and backward motions. Figureshows
possible expansions of the tree in correspondence of the choices for ds/ds. The tree is extended from q using
the motion generation scheme to perform:

- aforward motion, that produces a subpath leading to a configuration gy, on Ly 1;
- a self-motion, that produces a subpath leading to a configuration g on Ly;
- a backward motion, that produces a subpath leading to a configuration g, on Li_.

Whenever a singular configuration is generated during FM, BM or SM, the integration stops. Besides, for
each generated subpath, a procedure is called to verify that the terminal configuration (gs,, g.eir OF Qpy) iS
neither singular nor in collision with the obstacles.

Finally, on the basis of some preliminary analysis as well as of the obtained results, we conjecture that the
probabilistic completeness of the RRT algorithm is preserved with our planning scheme, at least for the case
of random choice of the residual inputs w, despite the fact that the construction of the tree takes place in the
task constrained space Ciask.

3.3 Extensions: cyclicity and moving obstacles

We now discuss two relevant extensions of the basic TCMP problem.

Cyclicity

Traditionally, task-constrained motion in configuration space for redundant robots is generated through kine-
matic control techniques [5], [6], [7], [8]. These are on-line motion generation schemes that use a generalized
inverse of the task Jacobian (e.g., the pseudoinverse), possibly with the addition of internal motions that do
not perturb the execution of the task (null space motions) and are therefore used for local optimization. How-
ever, researchers readily identified a critical issue of these schemes when used on repetitive tasks: in general,
closed paths in the task space do not result in closed paths in the joint space. This is clearly a drawback,
because it means that the robot motion is essentially unpredictable from cycle to cycle. Such behavior is par-
ticularly undesirable in human robot interaction scenarios, because it ultimately hinders the legibility of the
robot movements by the human.

With reference to the case of pure generalized inversion (no null-space motions), Shamir and Yomdin [9]
identified a quite restrictive structural condition that the generalized inverse must satisfy in order to possess
the cyclicity (also called repeatability) property. This condition, which was further refined in [10], was exploited
to design cyclic generalized inverses, e.g., in [11] and to achieve asymptotically cyclic kinematic control in [12].
Other works on cyclicity include, e.g., [13], [14], [15]. However, even when a cyclic generalized inverse is
used, there is no space left for additional objectives such as obstacle avoidance, because the addition of null
space motions would destroy the cyclicity property. An exception to the above situation is represented by
kinematic control schemes that rely on task augmentation to enforce a one-to-one mapping between task
and configuration space. The archetype of this approach is the Extended Jacobian method [16], [17]. This

E,ZSAPHAW Page 8 of

ICT-287513 SAPHARI Deliverable D7.4.1

L1

o]
L] .
o) Ahy
(o)

loop closure

Figure 3: The C-TCMP (Cyclic-TCMP) planner relies on bidirectional search and loop closure in the task-
constrained configuration space.

technique is guaranteed to produce cyclic configuration paths in response to closed task paths, but only on
the condition that algorithmic singularities are not encountered. Even neglecting for a moment this pitfall,
however, it is impossible to guarantee that the solution paths are collision-free, essentially due to the fact that
obstacle avoidance cannot be effectively encoded in an additional equality task.

An important observation is that repetitive tasks are usually assigned and known in advance. We argue,
therefore, that off-line planning is the best approach to generate safe cyclic paths in configuration space when
faced with this kind of tasks. In [18] we presented a solution for the extension of the TCMP problem to the
cases of cyclic motion tasks in order to preserve cyclicity in the joint space. In particular, to guarantee that the
generated paths in configuration space are cyclic, a bidirectional search is performed by growing two Rapidly-
exploring Random Trees in the task constrained configuration space: the first proceeds in the forward direction
of the task space path, whereas the second moves backwards. When the two trees become sufficiently near,
they are joined by a loop closure procedure that is designed using a feedback control technique.

The approach to the solution of the C-TCMP problem that we presented in [18] is illustrated in Figure
Since the problem addressed is a special case of Task-Constrained Motion Planning (TCMP), we adopt the
terminology and framework introduced in [2]. In summary, a bidirectional search of the task-constrained con-
figuration space Cyask is performed by growing two Rapidly-exploring Random Trees. Both trees are rooted at
Qstarts 1-€., 0n L(0); but the first explores Ciagk in the direction of increasing s, whereas the second proceeds in
the opposite direction. Trees extension is obtained integrating the motion generation scheme . When
the two trees become sufficiently near, they are joined by a loop closure procedure.

For building the trees, we sample the desired task path ¢;(s) using asequence {sg = 0, s1,...,SN_1, SN =
1} of N + 1 values of the path parameter s. Correspondingly, we use the shorthand notations t,; = t4(s;)
and £; = L(s;). Recall thatitis t; o = tqny and Lo = L.

EQ,TSAPHAW Page 9 of

ICT-287513 SAPHARI Deliverable D7.4.1

task path Sf

Sk

Si

Z(Skﬂ)

Figure 4: The structure of Sisk: each leaf L(s) is the set of configurations satisfying the task constraint at s
replicated along the time axis.

Moving obstacles

Another relevant extension of the basic formulation of the TCMP problem, which is reflected in many real
world applications, considers the presence of obstacles that move along trajectories, whose predictability can
range from fully known to completely unknown. In [19] we proposed a new planning algorithm to address
the TCMP problem in presence of motion task constraints and obstacles moving along known trajectories.
This has been shown to be a computationally difficult problem even for a single rigid body with unbounded
velocity in [20]. Early solutions (like, e.g., [21], [22], [23])) extend combinatorial or sampling-based methods by
considering a planning space consisting of the configuration or state space augmented with the time dimension
(respectively, configuration-time and state-time space). Other ad-hoc methods include the velocity obstacle
technique proposed in [24], [25], [26].

All the above methods prove to be prohibitively inefficient when dealing with articulated robotic systems,
due to the computational complexity of the problem.

A complication of Task-Constrained Motion Planning (TCMP) is that random sampling of the configuration
space is no more effective, because the probability of generating a sample in the feasible submanifold is zero.
To address this issue, a popular approach in the literature is to generate samples using standard randomized
search algorithms such as, e.g., PRM [27] or RRT [4], and then projecting the samples on the submanifold with
a given error tolerance. This projection may be performed via randomized gradient descent, tangent space
sampling or retraction [28].

Our control-based approach proposed in [19] is conceptually different. It guarantees a continuous satis-
faction of the task constraint and probabilistic completeness. With respect to projection-based methods, and
also to planners the control based planner allows to arbitrarily improve the task accuracy without increasing
the roadmap complexity. We called this extension to basic TCMP problem Task Constrained Motion Planning
with Moving Obstacles, or TCMP_MO. In [19] as an intermediate position with respect to realistic problems we
assumed that obstacles move along trajectories that are known in advance.

Due to the presence of moving obstacles, the planning space for TCMP_MO is not a simple subset of the
configuration space C. A configuration may be, in fact, admissible at a certain time instant and not admissible
at another due to obstacle movement. Hence, we need to include time in the picture. In particular, define:

E,ZSAPHAW Page 10 of

ICT-287513 SAPHARI Deliverable D7.4.1

the configuration-time space (henceforth CTS) as

S =Cx1[0,00);

the occupied CTS as
Socc = {(q,t) €S: R(q(t)) N O(t) 7é Q)}a

the free CTS as
Stree =S \ Socc;

the task-constrained CTS as

Stask = {(qvt) €S: k(‘]) = yd(5)78 € [Si,Sf]}.
The set Siask is @ manifold with boundary that naturally decomposes as a foliation:

Stask = U 6(5)

5€[s4,5¢]

with the generic leaf defined as

L(s)={(q,t) € S: k(q) = yq(s)}-

On each leaf, t can assume any value in [0, c0). Figure@illustrates the structure of Siask: the set of configura-
tions satisfying the task constraint at s (the so-called self-motion manifold associated to the task value at s) is
replicated along the time axis to form a leaf of Sigsk.

4 Extending to general tasks

4.1 Background

In the real world, robotic systems are usually assigned tasks that are more general than pure motion tasks. A
typical robotic application, both in industrial and in service domains, involves contacts and interactions with
humans and/or with the environment. For such applications, the motion planning problem must be described
considering the presence of hybrid motion-force tasks.

Consider for instance, the problem of planning the movement of a robotic system involved in welding or
cutting assignments in industrial applications. Both these type of operations require to specify a desired task
path for the end-effector as well as a desired force profile along the points of the task path at which the end-
effector is in contact with the environment (i.e. the object on which the operation must take place).

Hybrid motion-force tasks have been most often considered in literature from the control point of view,
while only a few works have been proposed in the past to handle force or hybrid motion-force tasks in motion
planning problems. Most of them were introduced in the context of grasp planning and robotic walking. In
[29] the authors propose methods for solving the grasp manipulation problem in presence of contact forces
and actuators bounds. In [30] and [31] some methods for finding smooth actuator efforts along pre-defined
joint motions have been proposed. In [32] a method called Force-Workspace is proposed to generate motions
for a mobile robotic system to handle a given set of loads over long motions satisfying the actuators bounds
without violating contact constraints and the kinematic constraints intrinsic of the structure. This method plans
feasible motions in the configuration space where the force task and the other constraints are mapped to form
constraint obstacles, similar to geometric C-space obstacles.

1@5APHAR| Page 11 of

ICT-287513 SAPHARI Deliverable D7.4.1

All these methods provide important tools, but, at the best of our knowledge, the path planning problem
in presence of hybrid motion-force tasks and kinematic and dynamic constraints with moving obstacles has
not been addressed yet.

We propose a control-based RRT-like path planning algorithm to solve this complex problem, as evolution
of the framework developed for the TCMP problem with pure motion tasks and the subsequent extensions
introduced in Section concerning the cases of cyclic tasks and moving obstacles. The proposed solution is
based on a second-order version of the motion generation scheme introduced in Section(eq.).

4.2 Motion generation

Referring to the notation introduced in Section |2, we define the state-time space (STS for brevity) as
S =X x10,00),

the occupied STS as
Socc = {(q,¢,t) € S : R(q(t)) N O(t) # 0}

and the free STS as
Sfree =S5 \ Socc'

Similarly to moving obstacles, the motion task reduces the admissible region of STS. In particular, define
the task-constrained STS as the set of points of the state-time space whose state (generalized coordinates and
velocities) is consistent with the assigned motion task. In formulas, the planning space is:

Stask = {(q,q.t) € S 1 k(q) = y4(s), J(q)q = yjj(s)$,for some s € [s;,5¢], $ € (—00,00)}.

From a geometric viewpoint, Siask is @ manifold with boundary which foliates in leafs:
Stask = Use[si,sﬂﬁ(s)

with each leaf associated to a value of parameter s € [s;, s ¢]

L(s) ={(q,q,t) € S: k(q) = ya(s), f(q@) = fa(s), T (@)q = ya(s)3}.

Figureillustrates the structure of the leaves.

The existence of a solution to the planning problem depends on the interplay between the desired task
and the obstacles’ motion, and in particular on the connectedness of the search space Siask N Siree. However,
even a candidate solution contained in such space may still turn out to be unfeasible when the bounds on the
available velocities and torques are considered.

At the core of our proposed planner is a motion generation scheme that starting from a generic vertex
of the tree, located on a certain leaf, produces a feasible subtrajectory that is contained in Siask N Stree and
lands on either the next or the previous leaf. The state and time instant at which landing occur generate a new
vertex. Due to the presence of torque bounds, such scheme must operate at the acceleration level.

Consider a generic vertex V' = (qy, gy, ty') on leaf £;. While the same value of s = sy, is shared by all
vertexes on Ly, a different value of § = $y/ is associated to each vertex, as a byproduct of the subtrajectory
that generated that vertex.

The generalized velocities and accelerations associated to a particular solution can be written as

q(t) = q'(s)s(t) (12)

and
() = q"(s)8*(t) + 4 (s)3(1), (13)

1@5APHAR| Page 12 of

ICT-287513 SAPHARI Deliverable D7.4.1

(@aqt) (g4t

E(S.IC) \\\\ -
NN
L
\ s/ - -
M
g position path \\ Skl
\ /
I /
¢
p ot force path
/]
] L o . .
S5; Sk Sk S/-

Figure 5: Stask is a foliation: each leaf L(s) is the set of points (g, q,t) € S such that g and g are consistent
with the motion task constraint for a certain value of s, while £ may assume any value.

where we have used the notation ()’ = d()/ds. Hence, any ¢ may be generated by choosing separately q”
(the geometric acceleration) and § (the rate of change of 3).
In particular, we choose § as
5§ =8y, (14)

with §y a constant value chosen within a predefined range [—¢max, Cmax|- As @ consequence, the profile of
s(t) from ty on will be quadratic. In particular, depending on the value of $y, and the chosen Sy, we may
obtain essentially four kind of motions of s over ¢, and correspondingly of y(s) over y,(s): (1) a monotonic
forward motion from s to sx41 (2) a motion which moves initially backward from s but then reverses its
direction before s;_; and proceeds forward to reach si.1 (3) a monotonic backward motion from s to s;_1
(4) a motion which moves initially forward from sy but then reverses its direction before s;1 and proceeds
backwards to reach si_1.
Geometric accelerations are generated using the second order motion generation scheme

qv(s) :JT(yg—J'q'%—ery—FKde;)+(I—JTJ)aV (15)

where J'isthe pseudoinverse of the task Jacobian, K, and K ; are positive definite gain matrices, e, = y,;,—y
is the task error, I — J'J is the orthogonal projection matrix in the null space of J, and ay is an arbitrarily
chosen n,-dimensional vector which produces internal motions without affecting effect on the task. Note that
e; = +y/, — Jq', where the 4 (—) sign must be used in correspondence of increasing (decreasing) values of
s, i.e., during a forward (backward) motion phase.

Using system state information corresponding to the vertex V (in particular sy, $y, gy and q%,), together
with the value 5y chosen in l} and the value g{, computed in , we are able to evaluate gy, ¢y, Gy (by
means of equations and l) and consequently, using the dynamic model , the torques required to

EEZTSAPHARI Page 13 of

ICT-287513 SAPHARI Deliverable D7.4.1

same geometric motion

tA partially different
geometric motion

jj

faster
same states

different instants

L1 slower (/

‘Ck ’CkJrl

fii

! Sk-1 5k Sk+1 5

Figure 6: An illustration of motion generation within our planner. In this particular case, it is assumed that
$ > 0. The two monotonic forward motions (blue) correspond to the same choice of ay (hence, of q’(,) but
different positive values of $y,. The non-monotonic motion (red) is generated again by the same choice of
ay but now with a negative §y,. The geometric motion is the same of the forward case until the direction its
reversed.

move the robot from the vertex V' along the planned subtrajectory:

Tm = B(qy)qy +n(qy, qy).

To this torque component, we can finally add the component that will guarantee execution of the force
task:

Tf= JT((IV)fd(S(QV))~

Finally, the total required torque for executing the hybrid task from V is obtained as:
T="Tm+Ty. (16)

Equation is used during the integration to test if the joint motions are dynamically feasible. Also
velocity constraints are continuously verified together with avoidance of moving obstacles. If any of these is
violated, the considered subtrajectory is discarded. Otherwise, integration proceeds until the subtrajectory
lands on an adjacent leaf to Ly, be it L1 or Li_1.

Figure@illustrates some typical situations encountered when applying the motion generation scheme from
avertexin L.

4.3 The complete planner

Our planner builds a tree in the search space Stask N Stree. The search is biased by IV samples of the assigned
motion-force tasks, denoted by y;, = y,(sx), corresponding to a predefined sequence {s; = S;, ..., Sk, ...,SN =
st} of values of s. Let £, = L(s,) be the leaf associated to y,, (see Figure .

The root of the tree is the triplet (g;, g;, 0), consisting of the initial robot state and time instant. This will
be the only vertex on L. All the other vertexes lie on some Ly, k = 2,..., N; in principle, there will be

EEYSAPHAW Page 14 of

ICT-287513 SAPHARI Deliverable D7.4.1

several vertexes on each leaf. Each vertex is a triplet (g, g, t) representing a robot state and the time at which
it was attained. An edge is a feasible subtrajectory joining two vertexes lying on adjacent leaves, obtained by
applying the previous motion generation scheme. The planning tree is expanded using an RRT-like mechanism.

5 Smooth transitions between consecutive tasks

A peculiar feature of this kind of generalized TCMP problem is that the hybrid task must be appropriately
assigned for the problem to be solvable, in the sense that some smoothness conditions must be met at the
transition points, i.e., the points where the robot end-effector makes or leaves contact with the environment.

In particular, building upon the works initiated by Huang and McClamroch in [33], one may show that the
motion and force tasks must satisfy the following conditions at each transition point:

1. the desired force f; must be zero at the point;

2. if a non-zero entrance/exit speed is desired at the transition, the tangent to the motion path at the point
should lie in the local tangent plane to the environment surface.

These conditions guarantee that no impact force is generated when contact with the surface is established,
and that the generated robot commands will be continuous at the task transitions.

On the basis of the these conditions, smooth transitions can occur even with non-zero transition velocities,
provided that the tangency requirement is met. In any case, the desired force must be zero at the transition.
Figureshows an example of a hybrid task with a smooth transition.

On the other hand, nonsmooth paths can be accepted as long as zero velocities are assigned at transition
points. Figureillustrates a situation in which, in order to avoid impact forces, the robot end-effector has to
stop when making and leaving contact with the environment surface. Note that in this case, since the robot
has zero velocity at the transition points, the profile of the force task is not required to be continuous there.

6 Planning experiments

The proposed planner was implemented on a 64-bit Intel Core i5-2320 CPU running at 3 GHz using Kite, a
software development kit for motion planning produced by Kineo CAM (Siemens). In this section, we report
two planning experiments for a scenario involving a 3-dimensional positioning task and 1-dimensional force
task for the tip of a KUKA LWR-IV 7-DOF manipulator mounted on a table. The degree of redundancy for this
kind of task is 2 (the wrist roll is frozen as it does not contribute to tip positioning nor to the tip applied forces).
Joint position, velocity and torque limits for this robot were taken from the official documentation. In this
scenario, all obstacles are fixed and collisions with them as well as self-collisions must be always avoided.

We used the same settings in both experiments. In particular, the planner uses a sequence of N = 11
equispaced samples from the desired task path (including the endpoints, which correspond to s = 0 and
s = 1). In the motion generation scheme, we use K, = 300 K; = 50 - I, and the null space term is
constrained to be in norm at most 100% of the range space term. The upper bound for |§| is ¢max = 1.
Integration is performed numerically using Euler method with step size As = 0.002.

In both experiments, the manipulator move its tip along a planar path contained in a horizontal plane while
avoiding collisions with the table, the wall, the whiteboard and the lamp. Part of the motion path is in the free
space and part lies on the whiteboard. In correspondence of the part of the motion task that is in contact with
the whiteboard, a force task normal to the whiteboard is also specified.

In the first experiment, we assume a task with smooth transition from free space motion to motion in
contact (see Figure@). The points on the motion task corresponding to the values s; and ss of the parameter s

E,ZSAPHAW Page 15 of

ICT-287513 SAPHARI Deliverable D7.4.1

‘} 1_

o

-

Figure 8: Smooth transition from free space motion task to hybrid motion-force contact task.

are the transition points. At those points, the desired force is zero and the tangent to the motion task path lies
on the plane of the constraint. This scenario matches the conditions discussed in Section and in particular a
nonzero velocity on the transition points is admissible. Figureshows some shapshots of a feasible solution
computed by the proposed planner for this case. Figure |11 shows the torques required to accomplish the
desired tasks (note that they are always within the bounds). Finally, the joint velocities are shown in Figure
note that they are zero at the beginning and at the end of the motion task, but nonzero at the transition
points. Figureshows the time history along the solution.

In the second experiment, we consider a motion-force tasks with nonsmooth transition from free space
motion to motion in contact (see Figure. In this case, for the reasons explained in Section a zero velocity
must be assigned to the end-effector at transition points to avoid undesired impact forces. Using the proposed
planner, a solution can be found as the union of the solutions of three separate subproblems, obtained by
dividing the original motion-force task into three parts, i.e., s € [0, s1], s € [s1, s2] and s € [s2, 1] respectively.
Figureshows some snapshots from a feasible solution. Due to the fact that at the transition points the robot
(not only the end-effector) stops, the time needed to complete the whole task in this case is quite larger than
in the first case. Figuresand show, respectively, the torques and the joint velocities along the solution.
Note that the joint velocities are zero at the transition points.

WSAPHAW Page 16 of

ICT-287513 SAPHARI Deliverable D7.4.1

motion task force task
fr
Sl 1»
52 0' 51 59 1s

T.

Figure 9: Experiment 1: Smooth transition from free space motion task to hybrid motion-force task.

Figure 10: Experiment 1: Sample frames from the solution.

XX SAPHARI Page 17 of

ICT-287513 SAPHARI Deliverable D7.4.1

200 ‘ ‘ ' ‘ 100
= 150 | —~ 807
I g 60
\Z—/ 100 é 0!
50| 1 I
))
2 Q 20
o) 0 / 1 o' 0
g S 20!
= 0 T oint 1 ' = 7 [jomt3
= 100 |—— Joint 2 - -40 —— joint 4
e —— bounds ‘S -60T —— joint 5
™ _150¢+ A L —— bounds
-80
-200 : ‘ ‘ ' ‘ - : : : : :
0 0.5 1 1.5 2 2.5 L 0 0.5 1 1.5 2 2.5
t t
Figure 11: Experiment 1: Required torques.
15
o 10} 1
=
< 5t 1
Nab
g O
8 OF [ot 1 M]
) — joint 2
> -10 joint 3
- —— joint 4
g 15 s |
= joint &
= ‘
=20 L
0 0.5 1 1.5 2 2.5 ’
t t
Figure 12: Experiment 1: Joint velocities. Figure 13: Experiment 1: Time history.

EZYSAPHAW Page 18 of

ICT-287513 SAPHARI

motion task

81

59

T.

Deliverable D7.4.1

force task

Figure 14: Experiment 2: Non-smooth transition from free space motion task to hybrid motion-force task.

t=2.94

t=4.86

1=6.46

Eg\
t=9.25

Figure 15: Experiment 2: Sample frames from the solution.

XXSAPHARl

Page 19 of

ICT-287513 SAPHARI Deliverable D7.4.1

200 —————————————— , 100
g | .80 —— joint 3
g 10 g 60 —— joint 4
> 100 > —— joint 5
= Z 40 —— bounds
D) 50 1))
g £ 20
=R —] 2 -20
- — joint 1 40
£ -100f | Joint 2 g
2 —— bounds .2, -60

-150’ _80

-200 T O T S -100 :

01 2 3 4 5 6 7 8 9 01 2 3 4 5 6 7 8 9
t t

Figure 16: Experiment 2: Required torques.

1.5
/~
0
~
=
]
> , A
=
S}
]
i) —— joint 1
> Al —— joint 2
E’ : joint 3
or— _ | —_— Joint 4
8, <15 joint 5
-2

Figure 17: Experiment 2: Joint velocities.

ZZXSAPHARI Page 20 of

ICT-287513 SAPHARI Deliverable D7.4.1

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

H. Choset adn K.M. Lynch and S. Hutchinson and G. Kantor and W. Burgard and L.E. Kavraki and S. Thrun,
Principles of Robot Motion: Theory. MIT Press, Cambridge, MA, 2005.

G. Oriolo and M. Vendittelli, “A control-based approach to task-constrained motion planning,” in 2009
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, St. Louis, MO, 2009, pp. 297-302.

S.M. LaValle and J.J. Kuffner, “Randomized kinodynamic planning,” in The International Journal of Robotics
Research, vol. 20, no. 5, pp. 378-400, 2001.

S.M. LaValle, “Rapidly-exploring random trees: A new tool for path planning,” in Tech. Rep., Computer
Science Dept., lowa State University, 1998.

A. Liegeois, “Automatic supervisory control of the configuration and behavior of multibody mechanisms,”
in IEEE Trans. on Systems, Man, and Cybernetics, vol. 7, no. 12, pp. 868-871, 1977.

C.A. Klein and C.H. Huang, “Review of pseudoinverse control for use with kinematically redundant ma-
nipulators,” in IEEE Trans. on Systems, Man, and Cybernetics, vol. 13, no. 3, pp. 245-250, 1983.

B. Siciliano, “Kinematic control of redundant robot manipulators: A tutorial,” in J. of Intelligent and Robotic
Systems, vol. 3, pp. 201-212, 1990.

S. Chiaverini and G. Oriolo and |. Walker, “Chapter 11: Kinematically redundant manipulators,” in Hand-
book of Robotics, O. Khatib and B. Siciliano, Eds. Springer, 2009, pp. 245-268.

T. Shamir and Y. Yomdin, “Repeatability of redundant manipulators: mathematical solution of the prob-
lem,” in IEEE Trans. on Automatic Control, vol. 33, no. 11, pp. 1004-1009, 1988.

R. Schaufler, C. Fedrowitz, and R. Kammuller, “A simplified criterion for repeatability and its application in
constraint path planning problems,” in 2000 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Taka-
matsu, Japan, 2000, pp. 2345-2350.

R. G. Roberts and A. A. Maciejewski, “Repeatable generalized inverse control strategies for kinematically
redundant manipulators,” IEEE Trans. on Automatic Control, vol. 38, no. 5, pp. 689—-699, 1993.

A. De Luca, L. Lanari, and G. Oriolo, “Control of redundant robots on cyclic trajectories,” in 1992 IEEE Int.
Conf. on Robotics and Automation, Nice, France, 1992, pp. 500-506.

R. Mukherjee, “Design of holonomic loops for repeatability in redundant manipulators,” in 1995 IEEE Int.
Conf. on Robotics and Automation, Nagoya, Japan, 1995, pp. 2785-2790.

Y. Michellod, P. Mullhaupt, and D. Gillet, “On achieving periodic joint motion for redundant robots,” in
IFAC World Congress, Seoul, South Korea, 2008, pp. 4355-4360.

A. M. Zanchettin and P. Rocco, “A general user-oriented framework for holonomic redundancy resolution
in robotic manipulators using task augmentation,” IEEE Trans. on Robotics, vol. 28, no. 2, pp. 514-521,
2012.

J. Baillieul, “Kinematic programming alternatives for redundant manipulators,” in 1985 IEEE Int. Conf. on
Robotics and Automation, St. Louis, MO, 1985, pp. 722—-728.

P. H. Chang, “A closed-form solution for inverse kinematics of robot manipulators with redundancy,” IEEE
Trans. on Robotics and Automation, vol. 3, no. 5, pp. 393—-403, 1987.

E,ZSAPHAW Page 21 of

ICT-287513 SAPHARI Deliverable D7.4.1

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

M. Cefalo, G. Oriolo, and M. Vendittelli, “Planning safe cyclic motions under repetitive task constraints,”
in 2013 IEEE Int. Conf. on Robotics and Automation, Karlsruhe, DE, May 6 - 10 2013.

M. Cefalo, G. Oriolo, and M. Vendittelli, “Task-constrained motion planning with moving obstacles,” in
2013 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2013.

J. Reif and M. Sharir, “Motion planning in the presence of moving obstacles,” J. ACM, vol. 41, no. 4, pp.
764-790, 1994.

K. Kant and S. W. Zucker, “Toward efficient trajectory planning: The path-velocity decomposition,” Int. J.
of Robotics Research, vol. 5, no. 3, pp. 72—89, 1986.

M. Erdmann and T. Lozano-Perez, “On multiple moving objects,” Algorithmica, vol. 2, no. 4, pp. 477-521,
1987.

T. Fraichard, “Dynamic trajectory planning with dynamic constraints: A ‘state-time space’ approach,” in
1993 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 1993, pp. 1393-1400.

P. Fiorini and Z. Shiller, “Time optimal trajectory planning in dynamic environments,” in 1996 IEEE Int.
Conf. on Robotics and Automation, Minneapolis, MN, 1996, pp. 1553—1558.

P. Fiorini and Z. Shiller, “Motion planning in dynamic environments using velocity obstacles,” Int. J. of
Robotics Research, vol. 17, pp. 760-772, 1998.

Z. Shiller, F. Large, and S. Sekhavat, “Motion planning in dynamic environments: Obstacles moving along
arbitrary trajectories,” in 2001 IEEE Int. Conf. on Robotics and Automation, Seoul, Korea, May 2001, pp.
3716-3721.

L. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars, “Probabilistic roadmaps for path planning high-
dimensional configuration spacess,” IEEE Trans. on Robotics and Automation, vol. 12, no. 4, pp. 566-580,
1996.

M. Stilman, “Global manipulation planning in robot joint space with task constraints,” IEEE Trans. on
Robotics, vol. 26, no. 3, pp. 576-584, 2010.

J. Kerr and B. Roth, “Analysis of Multifingered Hands,” International Journal of Robotics Research , vol.4,
no.4, Winter 1986, pp. 3-17.

C.A. Klein and S. Kittivatcharapong, “Optimal Force Distribution for the Legs of a Walking Machine with
Friction Cone Constraints,” IEEE Trans. on Robotics and Auto., vol 6, no. 1, Feb. 1990, pp 73-85.

M.A. Nahon and J. Angeles, “Optimization of Dynamic Forces in Mechanical Hands,” ASME Journal of
Mechanical Design, vol.113, June 1991, pp. 167-173.

A. Madhani and S. Dubowsky, “Planning motions of robotic systems subject to force and friction con-
straints with an application to a robotic climber,” Proceedings of the Ninth CISM-IFToMM Symposium on
Theory and Practice of Robots and Manipulators, vol.187, 1993, pp. 129-139.

H.P. Huang and N.H. McClamroch, “Time-optimal control for a robotic contour following problem,” IEEE
J. of Robotics and Automation, vol.4, April 1988, pp. 140-149.

E,ZSAPHAW Page 22 of

	Introduction
	Problem formulation
	Robot constraints
	Motion-force task definition
	Planning problem

	The case of pure motion tasks
	Task-Constrained Motion Planning (TCMP)
	TCMP problem formulation
	Extensions: cyclicity and moving obstacles
	Cyclicity
	Moving obstacles

	Extending to general tasks
	Background
	Motion generation
	The complete planner

	Smooth transitions between consecutive tasks
	Planning experiments

