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ExecuƟve Summary

This deliverable of work package WP7 deals with a relaƟvely novel problem, namely planning the moƟon of
an arƟculated robot that needs to execute a task involving the hybrid specificaƟon of feasible moƟon (i.e.,
compaƟble with robot kinemaƟc and dynamic constraints, and avoiding collisions with environment obstacles)
as well as of desired interacƟon forces (to be exchangedwith environment surfaces at selected locaƟonswhere
the robot is in contact).

Hybrid force/moƟon is indeed a well-established topic in the robot control literature, but the exisƟng con-
trol techniques are only able to deal with local decisions and constraints, and miss the generality of the above
formulaƟon (e.g., they cannot guarantee a collision-free moƟon consistent with the global task, even if one
exists). On the other hand, moƟon planning techniques generate complete soluƟons in known environments,
but do not address taskswith dynamic exchanges of forces/torques, especially when these need to be executed
in parallel or in sequence with long range moƟon tasks.

The algorithmic soluƟon developed within SAPHARI consists in a novel extension of a framework called
Task-Constrained MoƟon Planning (TCMP) that combines control-oriented techniques (path tracking, use of
the Jacobian null-space in the presence of redundancy, consideraƟon of robot dynamics) to guarantee accuracy
and efficiency, with state-of-the-art methods in randomized moƟon planning (like RRT, suitably modified) to
handle the complexity of large but cluƩered search spaces.

The class of considered problems includes also specific SAPHARI requirements such as smooth transiƟon
from free-space moƟon to contact situaƟons and vice versa, inclusion of human-aware constraints and ob-
jecƟves in the planning cost, moving obstacles, consideraƟon of manipulators mounted on mobile bases, in-
clusion of robot velocity, acceleraƟon, or torque limits, possibly varying along the task execuƟon, and so on.
All of these features can be addressed by the proposed numerical method, which is here illustrated on two
representaƟve case studies.

The approach is currently being tested also on one of the scenarios of the KUKA use case, namely for the
planning of fetch and carry of parts by a commissioning mobile manipulator helping operators in assembly
tasks. The present work interfaces on one side with the higher-level task planning methods developed in T7.2-
T7.3 of WP7, and provides on the other side nominal moƟon-force references for the interacƟon controllers
of T3.4 in WP3.
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1 IntroducƟon

In the real world, roboƟc systems are usually assigned tasks that are more general than pure moƟon tasks.
A typical roboƟc applicaƟon, may it be in an industrial or in a service context, will oŌen involve contacts and
interacƟons with humans and/or with the environment. For such applicaƟons, the moƟon planning problem
must be described considering the presence of hybrid moƟon-force tasks.

Hybrid tasks have been most oŌen considered in literature from the control point of view, while very few
works have been proposed in the past to handle these tasks in a planning context. In this document, we
describe a novel moƟon planning algorithm that is precisely designed to address hybrid tasks, in addiƟon to
guaranteeing saƟsfacƟon of constraints intrinsic to the specific robot (posiƟon, velocity and torque limits at
the joints) as well as avoidance of workspace obstacles, fixed or moving.

One important aspect of hybridmoƟon-force tasks is that they are typically intermiƩent in nature; i.e., they
are composed by sequences of moƟons in free space and moƟons in contact with the environment. At the
transiƟon points, where contact is established or abandoned, it is necessary to guarantee some smoothness
condiƟons to avoid undesirable impact forces or sudden transient errors. The proposed planner is able to
comply with these condiƟons in a natural way.

To illustrate the performance of the proposedmoƟon planning algorithm, some results are presented for a
scenario involving a KUKA LWRmanipulator execuƟng a hybrid task that involves both free moƟon andmoƟon
in contact with a planar surface.

2 Problem formulaƟon

For a generic roboƟc system, let q be a nq-dimensional vector of generalized coordinates represenƟng the
robot configuraƟon, and C be the configuraƟon space. We denote by X = C × Tq C, the nq × nq robot state
space, where Tq C is the tangent space of C at q, and by W the subset of IR2 or IR3 represenƟng the robot
workspace.

In the general formulaƟon of the problem, we assume that the workspace is populated by fixed and mov-
ing obstacles. Denote by R(q) ⊂ W and O(t) ⊂ W , respecƟvely, the volume occupied by the robot at
configuraƟon q and by all the obstacles at Ɵme t. Throughout the rest of the document, it is assumed that
O(t) is known for all t; i.e., that the obstacle moƟon is fully predictable. The assumpƟon that the trajectories
of the moving obstacles are known in advance is a first step towards the soluƟon of more realisƟc problems
with reduced predictability levels of obstacle moƟon. Note that there exist scenarios or fields of applicaƟons
in which this assumpƟon is actually verified. This is true, for example, in some industrial roboƟcs applicaƟons,
or in the animaƟon of digital characters.

2.1 Robot constraints

In a planning problem, wemust also take into account a number of limitaƟons intrinsic to the considered robot.
Constraints that are invariably present in roboƟc systems are posiƟon constraints (joint limits), kinemaƟc con-
straints (velocity limits) and dynamic constraints (torque limits). The first two are expressed as upper bounds
on the absolute value of joint posiƟons and velociƟes

|q| ≤ qM , |q̇| ≤ q̇M , (1)

whereas dynamic constraints limit the available actuator generalized forces τ (henceforth simply referred to
as torques):

|τ | ≤ τM . (2)

We call feasible a trajectory in q(t) in C that saƟsfies constraints (1–2).
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2.2 MoƟon-force task definiƟon

We assume that the robot is assigned a general task that prescribes the moƟon of a specific point of the
kinemaƟc chain (typically, the end-effector) as well as the forces/moments that the robot exchanges with the
environment. In the following, we call this amoƟon-force task for brevity. Note that the existenceof a force task
implies that the moƟon task brings the robot in contact with one or more surfaces belonging to the boundary
of the obstacle region, at least for part of the moƟon.

Denote by y the moƟon task coordinates, which take values in an ny-dimensional space Y , and by f the
force task coordinates, which take values in an nf -dimensional task space F (remember that f may include
moments).

The moƟon task coordinates y are related to the generalized coordinates q by the forward kinemaƟc map

y = k(q), (3)

whose differenƟal version is
ẏ = J(q)q̇, (4)

with J = ∂k/∂q the ny × nq moƟon task Jacobian matrix.
RelaƟng the force task coordinates f to the trajectory in configuraƟon space requires the consideraƟon of

the dynamic model of the robot in the Lagrangian form:

B(q)q̈ + n(q, q̇) = τ − JT (q)f . (5)

Here, B(q) is the inerƟa matrix, n(q, q̇) collects velocity and gravitaƟonal terms, and JT (q)f is the porƟon
of the actuator torques τ needed to balance the torques induced at the joints by the contact force f . Note
that we are implicitly assuming that the contact with the environment takes place at the same point (e.g., the
end-effector) where themoƟon task coordinatesy are defined. However, this assumpƟon does not involve any
loss of generality, because it may be easily removed by considering different Jacobian matrices in (4) and (5).

Then, the assigned moƟon-force task consists of a desired moƟon path yd(s) ∈ Y for the moƟon task
variables y and a desired force path fd(s) ∈ F for the force task variables f , where s ∈ [si, sf ] is a path
parameter. A typical choice for s is the arc length along the moƟon task path. Note that a desired force fd(s)
may only be specified for those values of s at which the moƟon task puts the robot in yd(s) contact with the
environment; thismay happen throughout the task or intermiƩently, depending on the considered applicaƟon.
At those values of swhere the robot is not in contact with the environment, we assume f(s) = 0. In this case,
eq. (5) indicates that the actuator torques are converted in puremoƟon. Finally, note that the themoƟon-force
task can be specified directly as a trajectory; in this case, s = t.

2.3 Planning problem

At this point, we are ready to formulate our planning problem, which consists in finding a feasible configuraƟon
space trajectory (i.e., one over which joint, velocity and torque limits are saƟsfied) such that the assigned
moƟon-force task is executed and collisions with obstacles are avoided. Clearly, for the planning problem to
be well-posed, we must take the assumpƟon that the robot is redundant with respect to the assigned moƟon-
force task, i.e., nq > ny + nf .

In the proposed framework, a soluƟon to this problem is built as the composiƟon of three parts: a configu-
raƟon space path, represenƟng the geometric part of the soluƟon, a Ɵme history along the path, and a torque
profile along the resulƟng trajectory.

More precisely, a soluƟon consists of a path {q(s) ∈ C, s ∈ [si, sf ], a conƟnuous Ɵme history s(t) :
[0, T ] 7→ [si, sf ], and a torque profile τ (t), t ∈ [0, T ], such that :

	
  
Page 4 of 22



ICT–287513 SAPHARI Deliverable D7.4.1

1. s(0) = si and s(T ) = sf ;

2. for all t ∈ [0, T ], it is y(t) = k(q(s(t))) = yd(s(t));

3. for all t ∈ [0, T ], it is f(t) = fd(s(t));

4. q(0) = qi, q̇(0) = q̇i, q̇(T ) = q̇f ;

5. for all t ∈ [0, T ], it is |q(t)| ≤ qM , |q̇(t)| ≤ q̇M and |τ(t)| ≤ τM ;

6. for all t ∈ [0, T ], it isR(q(s(t))) ∩ O(t) = ∅;

Requirement 1 simply state that the robot moƟon must start and stop on the endpoints of the task path
yd(si) and yd(sf ) respecƟvely. Together with conƟnuity, this guarantees that all values of s ∈ [si, sf ] are
generated. Requirements 2 and 3 guarantee that moƟon-force tasks are saƟsfied at any configuraƟon of the
soluƟon trajectory. Requirement 4 establishes that the robot matches the iniƟal configuraƟon and iniƟal and
final velociƟes (typically zero). Requirement 5 allows to saƟsfy joint posiƟon, velocity and torque bounds.
Finally, last condiƟon requires to avoid collisions with the obstacles (self-collisions can be tested as well).

Some further explanaƟon is in order with respect to requirement 3 above. Differently from the moƟon
task variables y(t) in requirement 2, the value of the force task variables f(t) at Ɵme t cannot be expressed as
a pure funcƟon of the configuraƟon q(t). Indeed, eq. (5) entails that f(t) results from the part of the actuator
torques τ that is not converted into moƟon; i.e., it is a funcƟon of τ (t), q(t), q̇(t) and q̈(t). Since this funcƟon
cannot be wriƩen in closed form, the planner will saƟsfy the force task constraint using a different mechanism
than the moƟon task constraint. In parƟcular, it will explicitly generate the joint torques that will drive the
robot so as to realize the desired moƟon-force task. These joint torques will then be explicitly included in the
soluƟon.

Note the following facts.

• In the general case s ̸= t, the Ɵme history s(t) is not required to be non-decreasing: s must start at
si and end at sf , but it is not required to be monotonic along the trajectory. This means that, at any
point along the path, s may increase (forward moƟon), remain constant (self-moƟon) or even decrease
(backward moƟon), if these maneuvers are useful for avoiding moving obstacles. In other words the
assigned yd(s), s ∈ [si, sf ], will only be the ‘footprint’ of the moƟon, whereas the actual moƟon yd(t),
t ∈ [0, T ], will depend on the choice of s(t).

• The iniƟal configuraƟonqi is assumed to be given. If this is not the case, a suitableqi maybepreliminarily
computed by inverse kinemaƟcs.

• The final configuraƟon q(sf ) = q(T ) and (if s ̸= t) the total duraƟon T of the moƟon are not assigned,
and will be generated by the planner.

3 The case of pure moƟon tasks

To fully understand the structure of our planner for the general case of moƟon-force tasks, it is convenient to
start from the simple case of a pure moƟon task. This will allow us to introduce the basic tools that will also
be used in the general case.
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Figure 1: Leaves of the task-constrained configuraƟon space Ctask, decomposed as a foliaƟon.

3.1 Task-Constrained MoƟon Planning (TCMP)

Task space constraints invariably arise in the pracƟcal operaƟon of roboƟc systems, both in service and in-
dustrial applicaƟons; examples include opening a door, transporƟng an object, cooperaƟng with other robots,
execuƟng a given end-effector trajectory for drawing, cuƫng or welding, tracking a visual target. KinemaƟcally
redundant roboƟc systems, such as humanoids andmobilemanipulators, possess the dexterity for accomplish-
ing these tasks while pursuing addiƟonal objecƟves, among which the most important is obstacle avoidance.
In the base formulaƟon of the planning problems here addressed we consider the presence of pure moƟon
tasks and fixed obstacles only. The moƟon planner must generate robot moƟons that saƟsfy the task space
constraints while guaranteeing that the robot body does not collide with parts of itself (self-collision) or with
workspace obstacles. In the following, this problem is referred to as Task-ConstrainedMoƟon Planning (TCMP).

Our soluƟon to the TCMP problem relies on the principle of control-basedmoƟon planning [1], a paradigm
where configuraƟon samples are generated using a differenƟal model of the robot (called moƟon generaƟon
scheme in the following). In parƟcular, in [2] a moƟon generaƟon scheme was introduced that is able to guar-
antee conƟnued saƟsfacƟon of the constraints. The use of this scheme leads to a sampling-based randomized
planner that achieves accurate execuƟon of the task without increasing the size of the roadmap.

3.2 TCMP problem formulaƟon

With reference to the previous problem formulaƟon for the general case, assume now that the assigned task
consists only of a moƟon task. That is, a desired path is assigned for the task variables y in the form yd(σ),
with σ ∈ [0, 1], w.l.o.g, and that yd(σ) is differenƟable. For the problem to be well-posed, we assume that:

yd(σ) ∈ T ∗ ∀σ ∈ [0, 1], (6)

where T ∗ ⊂ T is the non-singular task space, defined as the set of regular and co-regular task space points.
The workspaceW is assumed to be populated by fixed obstacles only.

In the above hypotheses, the Task-Constrained MoƟon Planning (TCMP) problem consists in finding a con-
figuraƟon space path q(s), s ∈ [si, sf ], and a surjecƟve, non-decreasing mapping 1 σ(s) : [si, sf ] → [0, 1]
such that:

1We use different parameterizaƟons for yd and q to take advantage of the possibility of performing self-moƟons or backward
moƟons.
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Figure 2: Possible extensions of the tree from the node q̄.

1. y(s) = k(q(s)) = yd(σ(s)),∀s ∈ [si, sf ] (see equaƟon (3));

2. the robot does not collide with obstacles or with itself.

The planning space for the TCMP problem is

Ctask = {q ∈ C : k(q) = yd(σ) for some σ ∈ [0, 1]}. (7)

The manifold Ctask, that we call task-constrained configuraƟon space, has naturally the structure of a foli-
aƟon (see Fig. 1). Its generic leaf is defined as

L(σ) = {q ∈ C : k(q) = yd(σ)}. (8)

Clearly, the existence of a soluƟon to the TCMP problem is determined by the obstacle placement, and in
parƟcular by the connecƟvity of Ctask∩Cfree, the porƟon of the free configuraƟon space that is compaƟble with
the task path constraint.

Our control-based randomized planner builds a Rapidly exploring Random Tree (RRT, see [3], [4]) in the
task-constrained configuraƟon space Ctask to search for a collision-free path. For the construcƟon of the tree,
wemakeuse of samples of the desired task pathyd(σ); in parƟcular, denoƟngby {σ1 = 0, σ2, . . . , σN−1, σN =
1} an equispaced sequence of N path parameter values, let yk = yd(k) (we drop the d subscript for com-
pactness). The tree edges are collision-free subpaths obtained by applying the following moƟon generaƟon
scheme:

q′ = ṽ (9)

ṽ = J†(q)(y′
d + kt et) + (I − J†(q)J(q))w̃, (10)

whereJ† is the pseudoinverse of the task JacobianJ , kt is a posiƟve gain, et = yd−y is the task error, I−J†J
is the orthogonal projecƟon matrix in the null space of J , and w̃ is an arbitrary nq-vector that represents a
residual input. One has J† = JT (JJT )−1 when J is full row rank; in our planner, this assumpƟon is always
saƟsfied because singular configuraƟons are discarded. Use of the above scheme guarantees e′

t = −k et, i.e.,
exponenƟally stable2 tracking of the desired task path, regardless of the choice of w̃.

2Since this is a planning scheme, stability is required for reducing the driŌ associated to a numerical integraƟon of (9–10).
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For any choice of w̃(s), s ∈ [0, 1], and starƟng from a generic leaf of Ctask, integraƟon of (9–10) provides
a configuraƟon path that starts from the current leaf and traverses subsequent leaves, always remaining in
Ctask. A numeric solver can be used to actually perform the integraƟon. Taking advantage of the different
parameterizaƟons of the task space and the configuraƟon space paths, one may also perform a moƟon on the
same leaf (self-moƟon) or even move backwards from the current leaf towards previous leaves. In formulas:

y′
d =

dyd

ds
=

dyd

dσ
· dσ

ds
(11)

where, for dσ/ds = 1/0/ − 1 we obtain, respecƟvely, forward, self- and backward moƟons. Figure 2 shows
possible expansions of the tree in correspondence of the choices for ds/ds. The tree is extended from q̄ using
the moƟon generaƟon scheme (9–10) to perform:

- a forward moƟon, that produces a subpath leading to a configuraƟon qfw on Lk+1;

- a self-moƟon, that produces a subpath leading to a configuraƟon qself on Lk;

- a backward moƟon, that produces a subpath leading to a configuraƟon qfw on Lk−1.

Whenever a singular configuraƟon is generated during FM, BM or SM, the integraƟon stops. Besides, for
each generated subpath, a procedure is called to verify that the terminal configuraƟon (qfw, qself or qbw) is
neither singular nor in collision with the obstacles.

Finally, on the basis of some preliminary analysis as well as of the obtained results, we conjecture that the
probabilisƟc completeness of the RRT algorithm is preserved with our planning scheme, at least for the case
of random choice of the residual inputs w̃, despite the fact that the construcƟon of the tree takes place in the
task constrained space Ctask.

3.3 Extensions: cyclicity and moving obstacles

We now discuss two relevant extensions of the basic TCMP problem.

Cyclicity

TradiƟonally, task-constrained moƟon in configuraƟon space for redundant robots is generated through kine-
maƟc control techniques [5], [6], [7], [8]. These are on-line moƟon generaƟon schemes that use a generalized
inverse of the task Jacobian (e.g., the pseudoinverse), possibly with the addiƟon of internal moƟons that do
not perturb the execuƟon of the task (null space moƟons) and are therefore used for local opƟmizaƟon. How-
ever, researchers readily idenƟfied a criƟcal issue of these schemes when used on repeƟƟve tasks: in general,
closed paths in the task space do not result in closed paths in the joint space. This is clearly a drawback,
because it means that the robot moƟon is essenƟally unpredictable from cycle to cycle. Such behavior is par-
Ɵcularly undesirable in human robot interacƟon scenarios, because it ulƟmately hinders the legibility of the
robot movements by the human.

With reference to the case of pure generalized inversion (no null-space moƟons), Shamir and Yomdin [9]
idenƟfied a quite restricƟve structural condiƟon that the generalized inverse must saƟsfy in order to possess
the cyclicity (also called repeatability) property. This condiƟon, whichwas further refined in [10], was exploited
to design cyclic generalized inverses, e.g., in [11] and to achieve asymptoƟcally cyclic kinemaƟc control in [12].
Other works on cyclicity include, e.g., [13], [14], [15]. However, even when a cyclic generalized inverse is
used, there is no space leŌ for addiƟonal objecƟves such as obstacle avoidance, because the addiƟon of null
space moƟons would destroy the cyclicity property. An excepƟon to the above situaƟon is represented by
kinemaƟc control schemes that rely on task augmentaƟon to enforce a one-to-one mapping between task
and configuraƟon space. The archetype of this approach is the Extended Jacobian method [16], [17]. This
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Figure 3: The C-TCMP (Cyclic-TCMP) planner relies on bidirecƟonal search and loop closure in the task-
constrained configuraƟon space.

technique is guaranteed to produce cyclic configuraƟon paths in response to closed task paths, but only on
the condiƟon that algorithmic singulariƟes are not encountered. Even neglecƟng for a moment this piƞall,
however, it is impossible to guarantee that the soluƟon paths are collision-free, essenƟally due to the fact that
obstacle avoidance cannot be effecƟvely encoded in an addiƟonal equality task.

An important observaƟon is that repeƟƟve tasks are usually assigned and known in advance. We argue,
therefore, that off-line planning is the best approach to generate safe cyclic paths in configuraƟon space when
faced with this kind of tasks. In [18] we presented a soluƟon for the extension of the TCMP problem to the
cases of cyclic moƟon tasks in order to preserve cyclicity in the joint space. In parƟcular, to guarantee that the
generated paths in configuraƟon space are cyclic, a bidirecƟonal search is performed by growing two Rapidly-
exploring Random Trees in the task constrained configuraƟon space: the first proceeds in the forward direcƟon
of the task space path, whereas the second moves backwards. When the two trees become sufficiently near,
they are joined by a loop closure procedure that is designed using a feedback control technique.

The approach to the soluƟon of the C-TCMP problem that we presented in [18] is illustrated in Figure
3. Since the problem addressed is a special case of Task-Constrained MoƟon Planning (TCMP), we adopt the
terminology and framework introduced in [2]. In summary, a bidirecƟonal search of the task-constrained con-
figuraƟon space Ctask is performed by growing two Rapidly-exploring Random Trees. Both trees are rooted at
qstart, i.e., on L(0); but the first explores Ctask in the direcƟon of increasing s, whereas the second proceeds in
the opposite direcƟon. Trees extension is obtained integraƟng the moƟon generaƟon scheme (9–10). When
the two trees become sufficiently near, they are joined by a loop closure procedure.

For building the trees, we sample the desired task path td(s)using a sequence {s0 = 0, s1, . . . , sN−1, sN =
1} of N + 1 values of the path parameter s. Correspondingly, we use the shorthand notaƟons td,i = td(si)
and Li = L(si). Recall that it is td,0 = td,N and L0 = LN .
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sk
sk+1si

sf

t

t1

t3
t2

L(sk)

task path

L(si) L(sk+1)

Figure 4: The structure of Stask: each leaf L(s) is the set of configuraƟons saƟsfying the task constraint at s
replicated along the Ɵme axis.

Moving obstacles

Another relevant extension of the basic formulaƟon of the TCMP problem, which is reflected in many real
world applicaƟons, considers the presence of obstacles that move along trajectories, whose predictability can
range from fully known to completely unknown. In [19] we proposed a new planning algorithm to address
the TCMP problem in presence of moƟon task constraints and obstacles moving along known trajectories.
This has been shown to be a computaƟonally difficult problem even for a single rigid body with unbounded
velocity in [20]. Early soluƟons (like, e.g., [21], [22], [23]) extend combinatorial or sampling-based methods by
considering a planning space consisƟng of the configuraƟon or state space augmentedwith the Ɵme dimension
(respecƟvely, configuraƟon-Ɵme and state-Ɵme space). Other ad-hoc methods include the velocity obstacle
technique proposed in [24], [25], [26].

All the above methods prove to be prohibiƟvely inefficient when dealing with arƟculated roboƟc systems,
due to the computaƟonal complexity of the problem.

A complicaƟon of Task-Constrained MoƟon Planning (TCMP) is that random sampling of the configuraƟon
space is no more effecƟve, because the probability of generaƟng a sample in the feasible submanifold is zero.
To address this issue, a popular approach in the literature is to generate samples using standard randomized
search algorithms such as, e.g., PRM [27] or RRT [4], and then projecƟng the samples on the submanifold with
a given error tolerance. This projecƟon may be performed via randomized gradient descent, tangent space
sampling or retracƟon [28].

Our control-based approach proposed in [19] is conceptually different. It guarantees a conƟnuous saƟs-
facƟon of the task constraint and probabilisƟc completeness. With respect to projecƟon-based methods, and
also to planners the control based planner allows to arbitrarily improve the task accuracy without increasing
the roadmap complexity. We called this extension to basic TCMP problem Task Constrained MoƟon Planning
with Moving Obstacles, or TCMP MO. In [19] as an intermediate posiƟon with respect to realisƟc problems we
assumed that obstacles move along trajectories that are known in advance.

Due to the presence of moving obstacles, the planning space for TCMP MO is not a simple subset of the
configuraƟon space C. A configuraƟon may be, in fact, admissible at a certain Ɵme instant and not admissible
at another due to obstacle movement. Hence, we need to include Ɵme in the picture. In parƟcular, define:
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• the configuraƟon-Ɵme space (henceforth CTS) as

S = C × [0,∞);

• the occupied CTS as
Socc = {(q, t) ∈ S : R(q(t)) ∩ O(t) ̸= ∅};

• the free CTS as
Sfree = S \ Socc;

• the task-constrained CTS as

Stask = {(q, t) ∈ S : k(q) = yd(s), s ∈ [si, sf ]}.

The set Stask is a manifold with boundary that naturally decomposes as a foliaƟon:

Stask =
∪

s∈[si,sf ]

L(s)

with the generic leaf defined as

L(s) = {(q, t) ∈ S : k(q) = yd(s)}.

On each leaf, t can assume any value in [0,∞). Figure 4 illustrates the structure of Stask: the set of configura-
Ɵons saƟsfying the task constraint at s (the so-called self-moƟon manifold associated to the task value at s) is
replicated along the Ɵme axis to form a leaf of Stask.

4 Extending to general tasks

4.1 Background

In the real world, roboƟc systems are usually assigned tasks that are more general than pure moƟon tasks. A
typical roboƟc applicaƟon, both in industrial and in service domains, involves contacts and interacƟons with
humans and/or with the environment. For such applicaƟons, the moƟon planning problemmust be described
considering the presence of hybrid moƟon-force tasks.

Consider for instance, the problem of planning the movement of a roboƟc system involved in welding or
cuƫng assignments in industrial applicaƟons. Both these type of operaƟons require to specify a desired task
path for the end-effector as well as a desired force profile along the points of the task path at which the end-
effector is in contact with the environment (i.e. the object on which the operaƟon must take place).

Hybrid moƟon-force tasks have been most oŌen considered in literature from the control point of view,
while only a few works have been proposed in the past to handle force or hybrid moƟon-force tasks in moƟon
planning problems. Most of them were introduced in the context of grasp planning and roboƟc walking. In
[29] the authors propose methods for solving the grasp manipulaƟon problem in presence of contact forces
and actuators bounds. In [30] and [31] some methods for finding smooth actuator efforts along pre-defined
joint moƟons have been proposed. In [32] a method called Force-Workspace is proposed to generate moƟons
for a mobile roboƟc system to handle a given set of loads over long moƟons saƟsfying the actuators bounds
without violaƟng contact constraints and the kinemaƟc constraints intrinsic of the structure. Thismethod plans
feasible moƟons in the configuraƟon space where the force task and the other constraints are mapped to form
constraint obstacles, similar to geometric C-space obstacles.
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All these methods provide important tools, but, at the best of our knowledge, the path planning problem
in presence of hybrid moƟon-force tasks and kinemaƟc and dynamic constraints with moving obstacles has
not been addressed yet.

We propose a control-based RRT-like path planning algorithm to solve this complex problem, as evoluƟon
of the framework developed for the TCMP problem with pure moƟon tasks and the subsequent extensions
introduced in SecƟon 3.3, concerning the cases of cyclic tasks and moving obstacles. The proposed soluƟon is
based on a second-order version of the moƟon generaƟon scheme introduced in SecƟon 3.2 (eq.(9–10) ).

4.2 MoƟon generaƟon

Referring to the notaƟon introduced in SecƟon 2, we define the state-Ɵme space (STS for brevity) as

S = X × [0,∞),

the occupied STS as
Socc = {(q, q̇, t) ∈ S : R(q(t)) ∩ O(t) ̸= ∅}

and the free STS as
Sfree = S \ Socc.

Similarly to moving obstacles, the moƟon task reduces the admissible region of STS. In parƟcular, define
the task-constrained STS as the set of points of the state-Ɵme space whose state (generalized coordinates and
velociƟes) is consistent with the assigned moƟon task. In formulas, the planning space is:

Stask = {(q, q̇, t) ∈ S : k(q) = yd(s), J(q)q̇ = y′
d(s)ṡ, for some s ∈ [si, sf ], ṡ ∈ (−∞,∞)}.

From a geometric viewpoint, Stask is a manifold with boundary which foliates in leafs:

Stask = ∪s∈[si,sf ]L(s)

with each leaf associated to a value of parameter s ∈ [si, sf ]

L(s) = {(q, q̇, t) ∈ S : k(q) = yd(s), f(q) = fd(s), J(q)q̇ = y′
d(s)ṡ}.

Figure 5 illustrates the structure of the leaves.
The existence of a soluƟon to the planning problem depends on the interplay between the desired task

and the obstacles’ moƟon, and in parƟcular on the connectedness of the search space Stask ∩ Sfree. However,
even a candidate soluƟon contained in such space may sƟll turn out to be unfeasible when the bounds on the
available velociƟes and torques are considered.

At the core of our proposed planner is a moƟon generaƟon scheme that starƟng from a generic vertex
of the tree, located on a certain leaf, produces a feasible subtrajectory that is contained in Stask ∩ Sfree and
lands on either the next or the previous leaf. The state and Ɵme instant at which landing occur generate a new
vertex. Due to the presence of torque bounds, such scheme must operate at the acceleraƟon level.

Consider a generic vertex V = (qV , q̇V , tV ) on leaf Lk. While the same value of s = sk is shared by all
vertexes on Lk, a different value of ṡ = ṡV is associated to each vertex, as a byproduct of the subtrajectory
that generated that vertex.

The generalized velociƟes and acceleraƟons associated to a parƟcular soluƟon can be wriƩen as

q̇(t) = q′(s)ṡ(t) (12)

and
q̈(t) = q′′(s)ṡ2(t) + q′(s)s̈(t), (13)
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Figure 5: Stask is a foliaƟon: each leaf L(s) is the set of points (q, q̇, t) ∈ S such that q and q̇ are consistent
with the moƟon task constraint for a certain value of s, while t may assume any value.

where we have used the notaƟon ()′ = d()/ds. Hence, any q̈ may be generated by choosing separately q′′

(the geometric acceleraƟon) and s̈ (the rate of change of ṡ).
In parƟcular, we choose s̈ as

s̈ = s̈V , (14)

with s̈V a constant value chosen within a predefined range [−cmax, cmax]. As a consequence, the profile of
s(t) from tV on will be quadraƟc. In parƟcular, depending on the value of ṡV and the chosen s̈V , we may
obtain essenƟally four kind of moƟons of s over t, and correspondingly of y(s) over yd(s): (1) a monotonic
forward moƟon from sk to sk+1 (2) a moƟon which moves iniƟally backward from sk but then reverses its
direcƟon before sk−1 and proceeds forward to reach sk+1 (3) a monotonic backward moƟon from sk to sk−1

(4) a moƟon which moves iniƟally forward from sk but then reverses its direcƟon before sk+1 and proceeds
backwards to reach sk−1.

Geometric acceleraƟons are generated using the second order moƟon generaƟon scheme

q′′
V (s) = J†(y′′

d − J ′q′ + Kpey + Kde
′
y) + (I − J†J)aV (15)

whereJ† is the pseudoinverse of the task Jacobian,Kp andKd are posiƟve definite gainmatrices, ey = yd−y
is the task error, I − J†J is the orthogonal projecƟon matrix in the null space of J , and aV is an arbitrarily
chosen nq-dimensional vector which produces internal moƟons without affecƟng effect on the task. Note that
e′

y = ±y′
d − Jq′, where the + (−) sign must be used in correspondence of increasing (decreasing) values of

s, i.e., during a forward (backward) moƟon phase.
Using system state informaƟon corresponding to the vertex V (in parƟcular sV , ṡV , qV and q′

V ), together
with the value s̈V chosen in (14) and the value q′′

V computed in (15), we are able to evaluate qV , q̇V , q̈V (by
means of equaƟons (12) and (13)) and consequently, using the dynamic model (5), the torques required to
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Figure 6: An illustraƟon of moƟon generaƟon within our planner. In this parƟcular case, it is assumed that
ṡk > 0. The two monotonic forward moƟons (blue) correspond to the same choice of aV (hence, of q′′

V ) but
different posiƟve values of s̈V . The non-monotonic moƟon (red) is generated again by the same choice of
aV but now with a negaƟve s̈V . The geometric moƟon is the same of the forward case unƟl the direcƟon its
reversed.

move the robot from the vertex V along the planned subtrajectory:

τm = B(qV )q̈V + n(qV , q̇V ).

To this torque component, we can finally add the component that will guarantee execuƟon of the force
task:

τ f = JT (qV )fd(s(qV )).

Finally, the total required torque for execuƟng the hybrid task from V is obtained as:

τ = τm + τ f . (16)

EquaƟon (16) is used during the integraƟon to test if the joint moƟons are dynamically feasible. Also
velocity constraints are conƟnuously verified together with avoidance of moving obstacles. If any of these is
violated, the considered subtrajectory is discarded. Otherwise, integraƟon proceeds unƟl the subtrajectory
lands on an adjacent leaf to Lk, be it Lk+1 or Lk−1.

Figure 6 illustrates some typical situaƟons encounteredwhen applying themoƟon generaƟon scheme from
a vertex in Lk.

4.3 The complete planner

Our planner builds a tree in the search space Stask ∩ Sfree. The search is biased by N samples of the assigned
moƟon-force tasks, denotedbyyk = yd(sk), corresponding to a predefined sequence {s1 = si, . . . , sk, . . . , sN =
sf} of values of s. Let Lk = L(sk) be the leaf associated to yk (see Figure 5).

The root of the tree is the triplet (qi, q̇i, 0), consisƟng of the iniƟal robot state and Ɵme instant. This will
be the only vertex on L1. All the other vertexes lie on some Lk, k = 2, . . . , N ; in principle, there will be
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several vertexes on each leaf. Each vertex is a triplet (q, q̇, t) represenƟng a robot state and the Ɵme at which
it was aƩained. An edge is a feasible subtrajectory joining two vertexes lying on adjacent leaves, obtained by
applying the previousmoƟon generaƟon scheme. The planning tree is expanded using an RRT-likemechanism.

5 Smooth transiƟons between consecuƟve tasks

A peculiar feature of this kind of generalized TCMP problem is that the hybrid task must be appropriately
assigned for the problem to be solvable, in the sense that some smoothness condiƟons must be met at the
transiƟon points, i.e., the points where the robot end-effector makes or leaves contact with the environment.

In parƟcular, building upon the works iniƟated by Huang and McClamroch in [33], one may show that the
moƟon and force tasks must saƟsfy the following condiƟons at each transiƟon point:

1. the desired force fd must be zero at the point;

2. if a non-zero entrance/exit speed is desired at the transiƟon, the tangent to themoƟon path at the point
should lie in the local tangent plane to the environment surface.

These condiƟons guarantee that no impact force is generatedwhen contact with the surface is established,
and that the generated robot commands will be conƟnuous at the task transiƟons.

On the basis of the these condiƟons, smooth transiƟons can occur even with non-zero transiƟon velociƟes,
provided that the tangency requirement is met. In any case, the desired force must be zero at the transiƟon.
Figure 8 shows an example of a hybrid task with a smooth transiƟon.

On the other hand, nonsmooth paths can be accepted as long as zero velociƟes are assigned at transiƟon
points. Figure 7 illustrates a situaƟon in which, in order to avoid impact forces, the robot end-effector has to
stop when making and leaving contact with the environment surface. Note that in this case, since the robot
has zero velocity at the transiƟon points, the profile of the force task is not required to be conƟnuous there.

6 Planning experiments

The proposed planner was implemented on a 64-bit Intel Core i5-2320 CPU running at 3 GHz using Kite, a
soŌware development kit for moƟon planning produced by Kineo CAM (Siemens). In this secƟon, we report
two planning experiments for a scenario involving a 3-dimensional posiƟoning task and 1-dimensional force
task for the Ɵp of a KUKA LWR-IV 7-DOF manipulator mounted on a table. The degree of redundancy for this
kind of task is 2 (the wrist roll is frozen as it does not contribute to Ɵp posiƟoning nor to the Ɵp applied forces).
Joint posiƟon, velocity and torque limits for this robot were taken from the official documentaƟon. In this
scenario, all obstacles are fixed and collisions with them as well as self-collisions must be always avoided.

We used the same seƫngs in both experiments. In parƟcular, the planner uses a sequence of N = 11
equispaced samples from the desired task path (including the endpoints, which correspond to s = 0 and
s = 1). In the moƟon generaƟon scheme, we use Kp = 300 Kd = 50 · I , and the null space term is
constrained to be in norm at most 100% of the range space term. The upper bound for |s̈| is cmax = 1.
IntegraƟon is performed numerically using Euler method with step size ∆s = 0.002.

In both experiments, themanipulatormove its Ɵp along a planar path contained in a horizontal planewhile
avoiding collisions with the table, the wall, the whiteboard and the lamp. Part of the moƟon path is in the free
space and part lies on the whiteboard. In correspondence of the part of the moƟon task that is in contact with
the whiteboard, a force task normal to the whiteboard is also specified.

In the first experiment, we assume a task with smooth transiƟon from free space moƟon to moƟon in
contact (see Figure 9). The points on the moƟon task corresponding to the values s1 and s2 of the parameter s
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Figure 7: Non-smooth transiƟon from free space moƟon task to hybrid moƟon-force contact task.

Figure 8: Smooth transiƟon from free space moƟon task to hybrid moƟon-force contact task.

are the transiƟon points. At those points, the desired force is zero and the tangent to the moƟon task path lies
on the plane of the constraint. This scenario matches the condiƟons discussed in SecƟon 5, and in parƟcular a
nonzero velocity on the transiƟon points is admissible. Figure 10 shows some snapshots of a feasible soluƟon
computed by the proposed planner for this case. Figure 11 shows the torques required to accomplish the
desired tasks (note that they are always within the bounds). Finally, the joint velociƟes are shown in Figure
12: note that they are zero at the beginning and at the end of the moƟon task, but nonzero at the transiƟon
points. Figure 13 shows the Ɵme history along the soluƟon.

In the second experiment, we consider a moƟon-force tasks with nonsmooth transiƟon from free space
moƟon to moƟon in contact (see Figure 14). In this case, for the reasons explained in SecƟon 5, a zero velocity
must be assigned to the end-effector at transiƟon points to avoid undesired impact forces. Using the proposed
planner, a soluƟon can be found as the union of the soluƟons of three separate subproblems, obtained by
dividing the original moƟon-force task into three parts, i.e., s ∈ [0, s1], s ∈ [s1, s2] and s ∈ [s2, 1] respecƟvely.
Figure 15 shows some snapshots from a feasible soluƟon. Due to the fact that at the transiƟon points the robot
(not only the end-effector) stops, the Ɵme needed to complete the whole task in this case is quite larger than
in the first case. Figures 16 and 17 show, respecƟvely, the torques and the joint velociƟes along the soluƟon.
Note that the joint velociƟes are zero at the transiƟon points.
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Figure 9: Experiment 1: Smooth transiƟon from free space moƟon task to hybrid moƟon-force task.
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Figure 10: Experiment 1: Sample frames from the soluƟon.
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Figure 12: Experiment 1: Joint velociƟes.
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Figure 13: Experiment 1: Time history.
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Figure 14: Experiment 2: Non-smooth transiƟon from free space moƟon task to hybrid moƟon-force task.
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Figure 15: Experiment 2: Sample frames from the soluƟon.
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Figure 16: Experiment 2: Required torques.

Figure 17: Experiment 2: Joint velociƟes.
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