

Project funded by the European Community's 7th Framework Programme (FP7‐ICT‐2011‐7)

Grant Agreement ICT−287513

A1

Deliverable D1.3.1
Report on safety monitoring framework and safe control strategies

Deliverable due date: November 2014 Actual submission date: 16th December 2014
Start date of project: 1 November 2011 DuraƟon: 48 months
Lead beneficiary: CNRS-LAAS Revision: Final

Nature: R DisseminaƟon level: PU
R = Report
P = Prototype
D = Demonstrator
O = Other

PU = Public
PP = Restricted to other programme parƟcipants (including the Commission Services)
RE = Restricted to a group specified by the consorƟum (including the Commission Services)
CO = ConfidenƟal, only for members of the consorƟum (including the Commission Services)

www.saphari.eu

Contributors
Mathilde Machin - LAAS-CNRS, France
Jérémie Guiochet - LAAS-CNRS, France
Tim Guhl - KUKA, Germany
Steffen Walther - KUKA, Germany
Vito Magnanimo - KUKA, Germany

1

ICT–287513 SAPHARI Deliverable D1.3.1

ExecuƟve Summary
Due to its complexity, a controller of an autonomous system cannot be completely tested or verified, and so,
some faults can remain. Moreover, operaƟonal condiƟons can differ from those intended at design Ɵme, in
parƟcular during interacƟons. As the safety of human beings may be endangered by autonomous systems, a
faulty controller or an unexpected environment condiƟon should not result in catastrophic consequences.

One fault tolerance mechanism to address this issue is a safety device that is only responsible to ensure safety.
Such a safety monitor is intended to be simple enough to be verifiable and independent from the main con-
troller. The safety monitor has not only observaƟon means, but also intervenƟon means (engage the brakes,
block a joint, emergency stop, etc.), and should be able to check online safety rules. Monitoring and triggering
intervenƟons is a classical approach to ensure safety. With respect to classical systems, a collaboraƟve au-
tonomous robot faces many different hazards in a more changing environment. Hence, such safety rules may
be complex to specify, and some inconsistencies between safety acƟons may occur.

We address this issue by proposing a method and a tool for the automaƟc generaƟon of safety rules. This
method starts from a risk analysis process based onUML andHAZOP, and then uses a tool we developed (based
on a model checker) to synthesize the safety rules. PotenƟally excessive limitaƟon of system funcƟonality due
to presence of the safety monitor is addressed through the noƟon of permissiveness.

A first validaƟon of the approach has been done during a collaboraƟon between LAAS-CNRS and KUKA. AŌer
a risk analysis of the KUKA use case, several safety invariants has been carried out through a collaboraƟon by
LAAS and KUKA. These safety invariants have been formalized and they resulted in safety rules. Three safety
invariants have been successfully implemented. A next step, is the implementaƟon of safety rules at different
levels of the robot controller architecture.

The method and the tool presented in this report are detailed in two publicaƟons that have been accepted in
peer-reviewed internaƟonal conferences:

• M. Machin, F. Dufosse, J.-P. Blanquart, J. Guiochet, D. Powell, and H. Waeselynck, “Specifying safety
monitors for autonomous systems,” in SAFECOMP. Springer, 2014.

• M. Machin, F. Dufosse, J. Guiochet, D. Powell, M. Roy, and H. Waeselynck, “Model-checking and Game
Theory for Synthesis of Safety Rules,” in HASE. IEEE, 2015.

	

Page 2 of 30

ICT–287513 SAPHARI Deliverable D1.3.1

Table of contents

1 IntroducƟon..4

2 Baseline and concepts ...5

2.1 Concepts ..5

2.2 Process overview..6

3 Safety rule producƟon ...8

3.1 Tools..8

3.2 System and intervenƟon modeling ...9

3.3 Safety, permissiveness and validity modeling ..9

3.4 Synthesis algorithm...10

3.5 Consistency between strategies ...12

4 Case Study..12

4.1 HAZOP-UML hazard analysis ...12

4.2 Safety invariant formalisaƟon ..12

4.3 Safety rule producƟon ...13

4.4 ImplementaƟon ...14

5 Conclusions ..16

Appendix A: Implemented strategies...18

Experimental setup..18

Collision in free space (SI6) ..18

Clamping (SI16)...20

Tilt box (SI1) ...21

General remarks ...22

Appendix B: Preliminary list of safety invariants...23

Hazards ...23

Remaining hazards...30

General environment hypotheses ...30

	

Page 3 of 30

ICT–287513 SAPHARI Deliverable D1.3.1

1 IntroducƟon

The autonomous roboƟc systems of interest to us offer a wide range of features and operate in a diverse
unstructured environment. They can thus be complex, whichmakes themdifficult to verify. Moreover, diversity
of the environment implies that tesƟng cannot significantly cover the situaƟons that the systemwill face. Here,
we choose a classical fault tolerance approach by considering online safety measures implemented in a device
called a safety monitor, that is simple and independent from the main control channel, and thus easier to
verify. The monitor is solely responsible for safe system behavior. To this end, the monitor is equipped with
means for context observaƟon (i.e., sensors) and is able to trigger safety intervenƟons.

The monitor behavior is specified declaraƟvely by a set of safety rules, each defining one intervenƟon to apply
in certain observaƟon condiƟons. However, safety intervenƟons may also prevent the system from fulfilling its
funcƟons. For instance, a vehicle whose emergency brakes are permanently engaged is useless. We require
the monitor to be permissive with respect to the possibility for the system to perform useful tasks.

We propose a process based on hazard analysis to specify safety monitors and extend it by means of formal
methods. Once a hazard is idenƟfied, it is necessary to specify what the monitor has to do to avoid it, i.e., the
safety rules. We aim to explore soluƟons very early in the autonomous system design process. Thus, many
observaƟons and intervenƟons can be considered in a first design iteraƟon, whereas only themost appropriate
ones are actually developed and implemented. We propose to use model-checking to explore and check the
specificaƟons.

	

Page 4 of 30

ICT–287513 SAPHARI Deliverable D1.3.1

2 Baseline and concepts
We introduce here the underlying concepts of our work, based on definiƟons adapted from [5], and then
present the overall process.

2.1 Concepts
Taking inspiraƟon from the IEC 61508 standard [1], we define a safety monitor as a device responsible for
safety, in opposiƟon to themain control channelwhich is responsible for all other funcƟonal and non-funcƟonal
requirements of the system. The monitor is equipped with means for context observaƟon (i.e., sensors) and
able to trigger safety intervenƟons. The safety monitor is independent from the main control channel, as
regards its means of observaƟon, computaƟon and intervenƟon. It is required to protect against all faults
that adversely affect safety, including interacƟon faults. The whole safety channel is assumed fault-free (for
example, we consider that the sensors available to the monitor are perfect, without uncertainty.) In pracƟce,
this must be achieved through classical redundancy and verificaƟon techniques. We focus in our work on the
upstream task of obtaining a correct high-level specificaƟon with respect to safety and permissiveness.

A safety invariant (SI) is a necessary and sufficient condiƟon to avoid a hazardous situaƟon. If a safety invariant
is violated, we assume that damage is immediate and irreversible, with no possible recovery. We refer to any
state violaƟng the safety invariant as a catastrophic state.

Example: “the robot speed shall not exceed 3m/s” (where 3m/s is the speed beyond which harm
is considered to be inevitable).

A safety intervenƟon is an acƟvity carried out explicitly to prevent the system from violaƟng a safety invari-
ant by constraining the system behavior. An intervenƟon is only applicable in states saƟsfying its associated
precondiƟon. We disƟnguish two types of intervenƟons: inhibiƟons and acƟons.
A safety inhibiƟon prevents a change in system state. When triggered, an inhibiƟon is assumed to be imme-
diately effecƟve.

Example : “lock the wheels” (with “robot staƟonary” as precondiƟon).

A safety acƟon triggers a change in system state (and implicitly prevents other state changes).
Example : “apply emergency brake”.

A safety trigger condiƟon defines when the intervenƟon is needed. The trigger condiƟon is chosen such that
it becomes true before the safety invariant is violated.

Example: “the robot speed is greater than 2 m/s (i.e., less than the safety invariant threshold of
3m/s)”.

A safety rule defines a way of behaving in response to a hazardous situaƟon. A safety rule can be operaƟonal-
ized as an if-then rule:
Safety rule≜ if [safety trigger condiƟon] then [safety intervenƟon].

Example: “if the robot speed is greater than 2m/s then apply emergency brake.”

As illustrated in Figure 1, the safety invariant defines the parƟƟon between catastrophic states and non-
catastrophic states of the monitored system. IntervenƟons have to be applied before the catastrophe, i.e.,
in non-catastrophic states. Now, intervenƟons add constraints to the system behavior. So the set of non-
catastrophic states is parƟƟoned intowarning states, where intervenƟons are applied, and safe states, in which
the system operates without constraint. The warning states are defined such that every path from a safe state
(e.g., xs on Figure 1) to a catastrophic state, e.g., xc, passes through a warning state, e.g., xw. The warning
state enables triggering of an intervenƟon to abort the path to the catastrophic state.

	

Page 5 of 30

ICT–287513 SAPHARI Deliverable D1.3.1

Warning states

Catastrophic states

Safe states
Path aborted

by action Path aborted
by inhibition

safety '
action

xs
xc xw

¬ STC
SI

safety
inhibition

Figure 1: ParƟƟon of system states in catastrophic, warning and safe states

Safety rule production

Synthesis of safety rules
of 1 safety invariant

Safety invariants

HazOp/UML

Margin analysis

Variables observable
by the monitor

Interventions
effects and preconditions

Synthesis of safety rules
of 1 safety invariant

Analysis of consistency
between rules of all the invariants

Consistent set of safety rules,
ensuring safety and permissiveness

Synthesis of safety rules
of 1 safety invariant

Discrete model of 1 safety invariant

Figure 2: Overview of the process

We assess the monitor and its safety rule set according to the following three properƟes:
Safety is the ability to ensure that the safety invariants are never violated, i.e., that catastrophic states are
unreachable.
Permissiveness is the ability to allow the system to perform its tasks.
Validity specifies that no intervenƟon is applied while its precondiƟon is false.

Safety and permissiveness are antagonisƟc. We take this antagonism into account by designing the monitor
to bemaximally permissive with respect to safety, i.e., to restrict funcƟonality only to the extent necessary to
ensure safety.

2.2 Process overview
Figure 2 presents the overall process. We base our process on a HAZOP-UML hazard analysis, which outputs
safety invariants expressed in natural language. We consider as a running example a mobile robot with a
manipulator arm and the informal safety invariant The arm must not be extended beyond the base when the
speed is greater than V0.

The safety invariant is then expressed formally with predicates on variables that are observable by themonitor.
We focus for now only on predicates involving a variable compared to a fixed threshold. This type of safety

	

Page 6 of 30

ICT–287513 SAPHARI Deliverable D1.3.1

C

v < V0
⋀ a = true

v ≥ V0
⋀ a = false

v ≥ V0
⋀ a = true

v < V0
⋀ a = false

Figure 3: The example model without margin

threshold is amenable to formal verificaƟon and is used in many real systems. Considering the two monitor
observaƟons: the absolute speed v, and a Boolean observaƟon of the arm posiƟon a (true when the arm is
above the base, false,when the arm is extended), the example safety invariant is formalized as v < V0 ∨ a =
true. This can be represented througha graph as in Figure 3.

The margin analysis parƟƟons non-catastrophic states into safe states and warning states by spliƫng variable
value intervals or sets. This is done one variable aŌer another. For example, the speed interval [0, V0[from the
safety invariant is parƟƟonable according to a marginm in two intervals [0, V0 −m[and [V0 −m,V0[. In the
case of arm posiƟon, the observaƟon is Boolean. The singleton value set {true} cannot be parƟƟoned, hence
no margin exists. Formal condiƟons for the existence of a margin are studied in [5].

From the margin analysis, we can discreƟze variables involved in the safety invariant in order to synthesize
safety rules. We call this the discrete model analysis, which is detailed in SecƟon 3. It is composed of three
main steps: creaƟon of a discretemodel, rule synthesis, and rule consistency checking. In order to keepmodels
simple enough to be validated, each safety invariant is modeled separately. The state variables of the model
are the observable variables discreƟzed by intervals according to the thresholds of the safety invariant and
the exisƟng margins. The discrete model (e.g., Figure 4) is the Cartesian product of the variable parƟƟons. A
catastrophic state is one that violates the safety invariant (there is one catastrophic state on Figure 4, labeled
C). The warning states (W) are those that lead the system to the catastrophe in one step. IntervenƟons are
modeled using the same discreƟzed variables. In the example the monitor is able to brake (acƟon) and to
prevent the arm from extending (inhibiƟon).

The monitor is responsible for neutralizing every transiƟon leading to a catastrophic state. For instance, Fig-
ure 5 illustrates a saƟsfying safety rule set, which applies braking in s3 and arm inhibiƟon in s1 and s2. Ad-
diƟonally to the transiƟons leading directly to the catastrophic state, several other transiƟons are deleted.
The safety rule set respects the safety properƟes, as the system cannot enter the catastrophic state. All non-
catastrophic states are reachable. Nevertheless, there is some loss of permissiveness as the system cannot
stay in s3. We consider this to be acceptable. In SecƟon 3.4, we propose a method to find systemaƟcally such
safety rule sets.

As safety invariants are processed separately, the final step is to check the consistency between the safety rule
sets from different safety invariants. This is addressed in SecƟon 3.5.

	

Page 7 of 30

ICT–287513 SAPHARI Deliverable D1.3.1

W

W

W

C

S

S

v < V0-m
⋀ a = true

v=0&a=1

V0-m
≤ v < V0

⋀ a = true

v=1&a=1

v ≥ V0
⋀ a = false

v=2&a=0

v ≥ V0
⋀ a = true

v=2&a=1

V0-m
≤ v < V0

⋀ a = false

v=1&a=0

v < V0-m
⋀ a = false

v=0&a=0

Figure 4: The example discrete model from the parƟƟons {true, false} for arm posiƟon, and {[0, V0 −
m[, [V0 −m,V0[, [V0, Vmax[} for speed

W

W

W

C

S

S

v < V0-m
⋀ a = true

v=0&a=1

V0-m
≤ v < V0

⋀ a = true

v=1&a=1

v ≥ V0
⋀ a = false

v=2&a=0

v ≥ V0
⋀ a = true

v=2&a=1

V0-m
≤ v < V0

⋀ a = false

v=1&a=0

v < V0-m
⋀ a = false

v=0&a=0

s1 s2

s3

t1
inhibition

action

Figure 5: The example model with a safety rule set

3 Safety rule producƟon
Given a safety invariant, several safety rules are usually needed to avoid violaƟon of the safety invariant. We
call a safety strategy a set of rules applied with respect to a single safety invariant. In this secƟon, we aim to
synthesize a safe, permissive and valid strategy based on the discrete model.

We have two approaches to synthesize strategies. The automaƟc synthesis finds strategies fast, given permis-
siveness requirements, by exploring automaƟcally the various combinaƟons of safety rules. The interacƟve
synthesis is more manual and enable the user to build or modify a strategy rule by rule. As it is less convenient
than the automaƟc synthesis, it is omiƩed here for brievity. It is fully presented in [3].

3.1 Tools
We use the modeling language SMV and the model-checker NuSMV2 [2]. SMV enables the declaraƟon of
integer variables and constraints on their behavior. NuSMV builds transparently the Cartesian product of the
ranges of all variables. When no constraint is declared, all the combinaƟons of variable values (i.e., states)
are possible and all transiƟons between each pair of states are implicitly declared. Constraints are then added
to delete undesired states and transiƟons. As for variables, Ɵme is discrete. It is modeled by the operator
next(). NuSMV iswell-adapted to our variable-orientedmodeling approach. Moreover, the implicit transiƟon
declaraƟon is convenient for modeling the whole physically possible behavior.

In the following, SMV code and output of NuSMV are given in typewriter font. !, &, |, -> are the classical logical
operatorsNOT , AND, OR, IMPLIES. We have developed a template file to facilitate the modeling and

	

Page 8 of 30

ICT–287513 SAPHARI Deliverable D1.3.1

to allow the process to be automated.

3.2 System and intervenƟon modeling
The domain of each variable of the safety invariant is parƟƟoned according to the thresholds of the safety
invariant and themargin (if it exists), and the resulƟng elements are numbered. For instance {[0, V0−m[, [V0−
m,V0[, [V0, Vmax[} is encoded as {0,1,2} (see Figure 4). ConƟnuity of variables, i.e., conƟguity of parƟƟon
elements, is modeled as the constraint: next(x) = x | x+1 | x-1, i.e., a variable x can stay in the same
interval or move to an adjacent interval, but it cannot jump from one interval to another that has no common
boundary.

We then model possible dependencies between variables. Nevertheless, some dependencies cannot be mod-
eled in a discrete way or with a given parƟƟon. If a dependency is not modeled, the discrete model has less
constraints than it should, or from another point of view, it has too many transiƟons. If this “super-graph” is
safe, so is the “true” model. On the contrary, the permissiveness results of the super-graph are not trustwor-
thy. The resulƟng strategies are always safe; but their level of permissiveness depends on the dependency
modeling effort.

IntervenƟons are always effecƟve (when their precondiƟons are true), provided some environmental and di-
mensioning assumpƟons. A safety braking acƟon requires to consider for example a maximum slope rate, a
maximum torque from the motors. Safety intervenƟons are then modeled as constraints that may be applied
or not. Consider a discreƟzed speed v. The braking acƟon and the acceleraƟon inhibiƟon can be modeled by:

braking -> ((v!=0 -> next(v)=v-1) & (v=0 -> next(v)=0))
acc_inhibition -> next(v)!=v+1

As these examples show, an intervenƟon usually adds a constraint on only one variable, and leaves the others
free. For example, at the same Ɵme step: speed can be decreased by braking, and the arm can fold (as in
transiƟon t1 in Figure 5).

We make no restricƟve assumpƟon about the behavior of the main control channel. The system model repre-
sents what is physically possible in the system without a monitor. Therefore, safety intervenƟons only remove
transiƟons, i.e., possible behaviors, and cannot add transiƟons, i.e., add physically impossible behaviors.

3.3 Safety, permissiveness and validity modeling
Monitor properƟes are expressed in CTL (ComputaƟon Tree Logic), which is enƟrely supported by NuSMV
without any syntax change. Time along paths is modeled by three operators: X for a property to hold in the
next state, G to hold on the enƟre path, F to hold eventually. The branching aspect is modeled by A, all the
branches, and E, there exists a branch. A CTL operator is composed of one branching operator and one Ɵme
operator. It is applied on states, or more generally on statements on the system state.

To model safety, we use the atomic property cata to denote the catastrophic states. cata is the negaƟon of
the safety invariant, e.g., cata := speed=2 & arm_pos=0. Safety is modeled as the unreachability of the
catastrophic states, i.e., in CTL, AG ¬ cata. The expression of cata is the only user task in the iniƟal property
modeling. Permissiveness and validity properƟes are generated automaƟcally. During the synthesis, the user
is supposed to remove some permissiveness properƟes according to the accepted permissiveness loss choices.

Permissiveness is translated by two liveness properƟes applied to each non-catastrophic state snc:

	

Page 9 of 30

ICT–287513 SAPHARI Deliverable D1.3.1

Synthesis of safety rules
of 1 invariant

Generate a strategy

no Check Reduced
permissiveness

Check Safety

Check Validity

Save strategy
Compute criteria

The user chooses a
strategy

no

no

End of tree
no

Discrete model
of 1 invariant

1 strategy
covering 1 invariant

Figure 6: The synthesis algorithm

• S®ÃÖ½� Ù���«��®½®ãù EF snc
The state is reachable from the iniƟal state.

• UÄ®ò�ÙÝ�½ Ù���«��®½®ãù AG EF snc
The state is reachable from any reachable state.

The automaton without any safety rule is usually permissive because it is only a structure without specified
behavior. Variables can change freely their values. Similarly, it is unsafe, as catastrophic states are reachable.

Validity specifies that intervenƟons are not applied in states that violate their precondiƟons. We express this
as:

AG
∧

i∈Interventions
i → preconditioni

where Interventions is the set of the candidate intervenƟons and preconditioni is the precondiƟon associ-
ated to intervenƟon i.

Once the safety invariant and the intervenƟons have been defined, and the properƟes have been generated,
we can synthesize a strategy using the synthesis algorithm.

3.4 Synthesis algorithm
The synthesis algorithm (Figure 6) runs from the discrete model. It outputs all safe and valid strategies that
saƟsfy the permissiveness requirements (if any such strategies exist). The synthesis algorithm is based on
the enumeraƟon of the strategies through a branch-and-cut algorithm and the verificaƟon of properƟes by

	

Page 10 of 30

ICT–287513 SAPHARI Deliverable D1.3.1

Table 1: Performance experiments
Number of Examined nodes Number of Costs
strategies Number % soluƟons Time Memory

2var2val_l 4096 6 0.15% 0 0.08s 11.8M
2var2val_a 262144 8 0.003% 0 0.16s 11.9M
2var3val_l 4096 74 1.8% 36 1.3s 12.2M
2var3val_a 262144 109 0.04% 36 3.5s 12.3M
3var2val_l 4.39 ∗ 1012 764 <0.001% 108 15s 12.3M
3var2val_a 9.22 ∗ 1018 1191 <0.001% 108 35s 12.5M
3var3val_l 4.39 ∗ 1012 94723 <0.001% 48000 1h7m 14M
3var3val_a 9.22 ∗ 1018 159145 <0.001% 48000 2h6m 14.3M

NuSMV. All the possible strategies are structured as the set of leaves of a tree. Some pruning criteria are
applied to faster the tree exploraƟon. A comprehensive descripƟon of the used algorithm can be found in [4].
The synthesis is implemented using NuSMV scripts and a C program.

To assess the tool efficiency, we test it on genericmodels. Themodels are generated as follows. All variables
have the samenumber of values. For example, in Table 1, system2var3valhas two variables and each variable
has 3 values. The iniƟal state has all variables at value 0, and the only catastrophic state has variables at their
maximum values. There are two possible models for intervenƟons. In the first one, (suffix _a), for any variable,
the monitor can increase the value of the variable, decrease it, or inhibit any changes of value. In the second
case (suffix _l), the monitor can only decrease and inhibit the variable values, and in addiƟon, the variables
cannot be inhibited when they take their maximum value. These models allow us to consider search spaces
ranging for a few thousands strategies to more than 1018. Experiments have been done on one core of an Intel
Core I7-4770 processor running at 3.4GHz. The results are in Table 1.

The first columns gives the size of the search space, i.e. the number of complete strategies. It would be
the number of steps of brute-force search. The second column compares our algorithm to brute-force search.
For example, in the first row, our algorithm visits 6 nodes, while brute-force search would visit 4096 nodes
(6/4096 = 0.15%). The gain is very high for all models. Finally, the third column gives the number of soluƟons
found by the search. These soluƟons are a subset of the examined strategies and it is interesƟng to see how
many extra nodes are visited to find them. In the largest model (3var3val_a), the total number of visited
nodes is only 3.3 Ɵmes the number of soluƟons. The pruning criteria are very efficient.

The memory consumpƟon of our tool is reasonable and increases slowly.. The increase of the execuƟon
Ɵme is also kept reasonable, if one considers that there are 15 orders ofmagnitude in size between the smallest
and largest search spaces, and that we do not stop the algorithm aŌer a first soluƟon is found. The pruning
criteria allow us to limit the number of steps to explore the tree of strategies.

Nevertheless, it may be surprising that a model with only three variables requires a 2-hours synthesis.
One might wonder whether the approach is useful in realisƟc cases. Firstly, the number of variables is not
unrealisƟc. A safety invariant models only one safety-relevant aspect of a system. In the real system studied
by [5], each invariant had no more than two variables. Secondly, the arƟficial models we used are generic, i.e.,
they have many intervenƟons and no variable dependencies. It follows that there are numerous soluƟons to
find, much more than in real cases. A preliminary version of the safety invariant “TilƟng the box” from the
KUKA use case has 4 variables (1 boolean variable and 3 variables with three values) and 3 intervenƟons are
available. Due to some dependency, the synthesis problem has only 4 minimal soluƟons. They are found in 3s
by our tool.

	

Page 11 of 30

ICT–287513 SAPHARI Deliverable D1.3.1

Figure 7: The robot of the KUKA use case

3.5 Consistency between strategies
Different strategies may apply intervenƟons simultaneously, which may be incompaƟble, e.g., braking and
acceleraƟon. To check strategy consistency, the previous models (with their strategies) are merged into a
single model. When observable variables are common to several models but with different domain parƟƟons,
a new domain parƟƟon is defined by taking the union of the thresholds from the different models.

A concurrent applicaƟon of the intervenƟons i1 and i2 is checked by the CTL formula:

¬EF (i1 ∧ i2)

4 Case Study
LAAS-CNRS and KUKA collaborate to apply the presented method on the KUKA use case, from the hazard
analysis to the implementaƟon of the safety monitor. The robot is composed of a Omnirobmobile base and an
LWR arm (see Figure 7). It is an industrial co-worker in a manufacturing seƫng. It takes and places part boxes
on shelves, work staƟons, or on the robot base in order to convey them. It operates in the human workspace.
A complete descripƟon of this case study is given in [6]. Safety aspects of the use case are described in [7].

4.1 HAZOP-UML hazard analysis
From the UML descripƟon given in [7], we applied the HAZOP/UMLmethod to find hazards. As a reminder the
HAZOP-UML approach (Figure 8) is based on UML diagrams (sequence and use case), and uses some guide-
words to perform a systemaƟc analysis of deviaƟons of the scenarios of use. In this applicaƟon, it results in
more than 100 HAZOP lines with a non-zero severity.

4.2 Safety invariant formalisaƟon
From those HAZOP lines, 16 safety invariants have been formulated in natural language (see Table 2). In close
collaboraƟon, some invariants have then been formalized using only variables available to the safey monitor
(see Appendix 5).

As the invariant 15 “The handguiding is not followed”, some invariants have not been formalized because
the relevant variables were not observable by the monitor.

	

Page 12 of 30

ICT–287513 SAPHARI Deliverable D1.3.1

Guideword Signification

No / None Complete negation of the design

More than Quantitative increase

Less than Quantitative decrease

As well as All the design intention is
achieved together with additions

Part of Only some of the design
intention is achieved

Reverse The logical opposite of the
design intention is achieved

Other than Complete substitution

UML Models

Sequence diagram

Use case diagram

HAZOP Guidewords HAZOP-UML analysis

Figure 8: HAZOP-UML process

Table 2: List of Safety Invariants
Number Name DescripƟon

SI1 Tilt box A box is in the gripper. If the box Ɵlts too much, parts fall out.
SI2 Collision with plaƞorm The robot plaƞorm collides with a human.
SI3 Arm and plaƞorm velociƟes The plaƞorm moves. The arm moves and collides with a human. The collision velocity is

the sum of the two velociƟes.
SI4 Gripper clamps human hand The gripper fingers close on human part.
SI5 Workspace sharing Collision in the parƟcular case of workspace sharing in workstaƟon B.
SI6 Collision The robot arm collides something with an high torque.
SI7 Collision with extended arm Collision between a human and the robot arm that is extended beyond the plaƞorm foot-

print while the plaƞorm is moving.
SI8 Robot in restricted area The robot must not be in restricted area.
SI9 Plaƞorm moƟon overturn boxes on

table
The gripper takes or places a box on a table. The plaƞorm moves, so the gripper moves
horizontally at box height. The gripper overturn boxes and sharp parts scaƩer on table.

SI10 Excessive arm velocity In general, the arm velocity must be limited.
SI11 Drop box A box is in the gripper and is dropped anywhere but on table, robot storage, shelf or

during handover.
SI12 Excessive plaƞorm velocity In general, the plaƞorm velocity must be limited.
SI13 Excessive arm velocity during inter-

acƟon
During physical interacƟon, the arm velocity must be limited.

SI14 Excessive plaƞorm velocity during
guiding

The user moves the robot out of his way by guiding it (applying a force on robot arm).
The plaƞorm velocity must be limited during this step.

SI15 The handguiding is not followed In the quality control workstaƟon, the user manipulates a box in the robot gripper by
handguiding the robot arm. The robot arm does not follow the handguiding.

SI16 Clamping The end-effector clamps a human part on table or robot storage. This hazard is effecƟve
only when the end-effector (empty gripper or box) is close to table.

4.3 Safety rule producƟon
Safety invariants have beenmodeled within our framework, in collaboraƟon with KUKA. Corresponding strate-
gies have been synthesized using our tool. 3 invariant models are given in Appendix 5.

	

Page 13 of 30

ICT–287513 SAPHARI Deliverable D1.3.1

Figure 9: Overview of the safety monitoring of KUKA. Each AMF (Atomic Monitoring FuncƟon) is a predicate
on an observable variable. If each AMF is assessed to true (AND operator) then the reacƟon is triggered.
Safety funcƟons runs concurrently (OR operator).

Figure 10: The experimental setup

4.4 ImplementaƟon

The safety channel used by KUKA is close to the assumpƟons presented in this report regarding the monitor.
The safety channel of KUKA is executed redundantly on two devoted cores, which is a compliant design of the
monitor regarding the independence and correctness requirements. Consequently, a restricted set of observ-
able variables is available to the monitor. The safety channel behavior is declared through a table (see Figure
9).

In the context of our study, the KUKA architecture has two possible interfaces. The first is the safety channel,
which is close to the assumpƟons of monitor correctness. The second is the usual Java interface, which en-
ables the programmer to access to any observaƟon and actuaƟon. This interface is normally devoted to the
funcƟonal robot programming.

The experimental setup (see Figure 10) was a LWR robot arm. The safety channel was simulated by the Java

	

Page 14 of 30

ICT–287513 SAPHARI Deliverable D1.3.1

interface. 3 strategies, presented in Appendix 5 were implemented, covering the hazards of clamping, collision
and ƟlƟng in a “pick and place” task.

The experiments show that some assumpƟons of the method must not be neglected. The method requires
that the control latency, the intervenƟon efficiency and the observaƟon accuracy are bounded and assessed,
which was not possible in the preliminary implementaƟon because of physical restricƟons. In parƟcular, the
use of some observaƟon requires to add their own safety rules. For example to be able to detect fast enough an
increase of clamping force, the velocity of the armmust be limited. This limit must be, and has been, included
in the safety monitor. The systemaƟc idenƟficaƟon of this kind of problems and of the numerical values of
thresholds to avoid them is a challenge and a prerequisite to apply successfully our method.

Some limitaƟons of the method have been idenƟfied. For example, the very fast changes of forces in a con-
tact situaƟon, can appear as a disconƟnuity in the sampled observaƟons, violaƟng a basic assumpƟon of the
method. In general, there is discussion to determine whether some variable observaƟons, e.g., localizaƟon,
are reliable enough to be used by the safety monitor, and in what condiƟons.

An extension of the current method to a double-layer safety monitor has been discussed.

	

Page 15 of 30

ICT–287513 SAPHARI Deliverable D1.3.1

5 Conclusions
We have described a method for obtaining a high-level safety monitor specificaƟon, taking into account the
specific features of autonomous systems. We base it on hazard analysis, which is non-formal. Thanks to formal
methods, we ensure that the derivaƟon from formal safety invariants to safety rules is correct, provided the
modeling of safety invariants is valid. Safety invariants are modeled separately in order to maintain model
validability and to ensure scalability.

Ourmethod jusƟfies themodeling effort in that it does not only check the specificaƟon but also guides the user
in building it. Comparedwith relatedwork, both acƟons and inhibiƟons are allowed, resulƟng in amore generic
method. Another strong point is the explicit modeling of permissiveness. The user has no permissiveness
requirement to provide and can choose precisely the permissiveness trade-off (provided variable dependency
is modeled). By using the template, the modeling approach is scalable to many variables and intervenƟons.

We plan to apply the method on more safety invariants from the KUKA use case. ValidaƟon of the method will
be done by implemenƟng and tesƟng strategies on the KUKA robot.

	

Page 16 of 30

ICT–287513 SAPHARI Deliverable D1.3.1

References
[1] “ISO/IEC 61508-7: FuncƟonal safety of electrical / electronic / programmable electronic safety-related

systems - part 7: Overview of techniques and measures,” 2010.

[2] A. Cimaƫ, E. Clarke, A. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. SebasƟani and A. Tacchella,
“Nusmv 2: An opensource tool for symbolic model checking,” Computer Aided VerificaƟon, Springer,
2002.

[3] M. Machin, F. Dufossé, J.-P. Blanquart, J. Guiochet, D. Powell, and H. Waeselynck, “Specifying safety mon-
itors for autonomous systems,” in SAFECOMP. LNCS, 2014.

[4] M. Machin, F. Dufossé, J. Guiochet, D. Powell, M. Roy, and H. Waeselynck, “Model-checking and Game
Theory for Synthesis of Safety Rules,” in HASE. IEEE, 2014.

[5] A. Mekki-Mokhtar, J.P. Blanquart, J. Guiochet, D. Powell and M. Roy, “Safety trigger condiƟons for criƟcal
autonomous systems,” 18th. Pacific Rim Int. Symp. on Dependable CompuƟng (PRDC), IEEE, 2012.

[6] KUKA, “Milestone 7: Use Case requirements communicated to other WPs”, T8.2-4, SAPHARI, 2012.

[7] LAAS-CNRS, “Milestone 8: Risk analysis of target use cases and safety monitoring completed”, T8.2-4,
SAPHARI, 2013.

	

Page 17 of 30

ICT–287513 SAPHARI Deliverable D1.3.1

Appendix A: Implemented strategies

Experimental setup
The experimental setup consists in a arm fixed on the table equipped with a gripper (see Figure 11). The
monitor is simulated through the Java interface for faster implementaƟon andmore flexibility than available in
the restricted safety layer. Among all the observaƟon available to the Java interface, we use only the ones that
would be available to the safety channel. The only intervenƟon available is the pause, that is a fast stop of the
robot because it is the only reacƟon of the robot that can be guaranteed in terms of true machine safety (e.g.,
in case the power is cut). In this setup, no values are available as Ɵming bounds for computaƟon and stop, so
as to observaƟon accuracy. As a consequence values of margin are determined empirically and not computed.

The table height, the posiƟons of (blue) part and (yellow) box are known.
The task is to pick the blue part and to place it on the yellow box.

Figure 11: The experimental setup

We implemented three strategies, covering the hazards of collision, clamping and ƟlƟng the box.

Collision in free space (SI6)
A collisionwith high forces is, of course, hazardous. It is observable through the external torquemeasurements
of the LWR. Nevertheless, when the part is placed, an external torque is expected. We consider that an external
torque occurring when the gripper is very close to the table is not a collision. This is due to the assumpƟon

	

Page 18 of 30

ICT–287513 SAPHARI Deliverable D1.3.1

that if the gripper is already very close to the table, there can be no hand in between. The discrete model,
expressed in the SMV language, is as follow :

MODULE Collision
VAR
-- external torque
ext_torque : Continuity(0,2,0); -- 2: normal torque , 1: margin , 0: too high
-- absolute module of velocity
vel : Continuity(0,3,0); -- 0: standstill , 1: normal , 2:margin , 3:too high
-- z gripper position
z : Continuity(0,2,2); -- 0: on table , 1: margin , 2: high from table

--Dependence: no position change with velocity=0
TRANS vel.v=0 & next(vel.v)=0 -> z.v=next(z.v)

DEFINE cata:= ((ext_torque.v=2 & vel.v!=0) | vel.v=3) & z.v=2 ;

The only intervenƟon available is the stop. Nevertheless, stop is modeled by several intervenƟon modules in
the model, as it has effect on posiƟon, velocity and torque at the same Ɵme.

The hazard is limited to the zone high from table. It happens when an external torque occurs with a non-zero
velocity. From a determined velocity, torque can exceed its limit too fast to be measured in its margin. The
role of the sampling is here to be underlined. Consequently, a collision cannot be miƟgated at high velocity.
We consider high velocity as hazardous.

The synthesis returns one strategy:
flag_stop =

ext_torque.v=1&arm_vel.v=0&z.v=1 -- a first state
| ext_torque.v=2&arm_vel.v=0&z.v=1 -- a second state
| ext_torque.v=1&arm_vel.v=1&z.v=1 -- a third state
| ext_torque.v=2&arm_vel.v=1&z.v=1
| ext_torque.v=0&arm_vel.v=2&z.v=1
| ext_torque.v=1&arm_vel.v=2&z.v=1
| ext_torque.v=2&arm_vel.v=2&z.v=1
| ext_torque.v=0&arm_vel.v=3&z.v=1
| ext_torque.v=1&arm_vel.v=3&z.v=1
| ext_torque.v=2&arm_vel.v=3&z.v=1
| ext_torque.v=1&arm_vel.v=0&z.v=2
| ext_torque.v=2&arm_vel.v=0&z.v=2
| ext_torque.v=1&arm_vel.v=1&z.v=2
| ext_torque.v=0&arm_vel.v=2&z.v=2
| ext_torque.v=1&arm_vel.v=2&z.v=2

Discrete models have been introduced as finite state machines (see Figure 4). Each line is a state of the
machine ; each state is defined by a combinaƟon of values of variables. The states menƟoned here are the
warning states, i.e., the states from which one step is enough to reach a catastrophic states. The first state
corresponds to: the torque close to the safety limit (in themargin interval modeled by the value 1), the velocity
is zero (standsƟll), the gripper is close to the table (in the margin interval modeled by the value 1). The trigger
flag of the intervenƟon stop is an OR of every line, i.e., it is set to true for all in every warning states. This
strategy (apply stop in the menƟoned states) is obtained fully automaƟcally from the discrete model.

To test this strategy, a collision is done by an external user (see Figure 12). The robot stops saƟsfyingly in case
of collision. The monitored external torque does not exceed the safety limit. As the setup does not include an
external sensor, the measure cannot be validated by an independent measurement. As expected, collisions
when the gripper is close to the table are not covered.

	

Page 19 of 30

ICT–287513 SAPHARI Deliverable D1.3.1

Figure 12: Collision experiment

Clamping (SI16)
To avoid clamping, the z-axis force at the tool point must not exceed a limit when the tool is close to the table.
We model the hazard as following:

-- Model
MODULE Clamping

VAR
tcp : Continuity(0,2,0);
vel : Continuity(0,2,0);
z : Continuity(0,2,2);

DEFINE cata:= z.v=0 & (tcp.v=2 | vel.v=2);

The state is hazardous when the gripper is close to the table (z=0 with z the discrete height from the table) ;
and when the force (tcp) is high. In case the velocity is high, the force measure increases too fast to enable
the monitor to react. Then, we add a high velocity as a hazardous case. We make here the assumpƟon that
the whole table surface is as soŌ as the box, enabling to measure the torque increasing slowly enough to be
detected before it reach the safety limit. The synthesis returns one strategy:

flag_stop =
tcp.v=1&vel.v=0&z.v=0

| tcp.v=0&vel.v=1&z.v=0
| tcp.v=1&vel.v=1&z.v=0
| tcp.v=1&vel.v=0&z.v=1
| tcp.v=2&vel.v=0&z.v=1
| tcp.v=0&vel.v=1&z.v=1
| tcp.v=1&vel.v=1&z.v=1
| tcp.v=2&vel.v=1&z.v=1
| tcp.v=0&vel.v=2&z.v=1
| tcp.v=1&vel.v=2&z.v=1
| tcp.v=2&vel.v=2&z.v=1

The strategy applies stop in every listed state.

	

Page 20 of 30

ICT–287513 SAPHARI Deliverable D1.3.1

Figure 13: Clamping experiment

To test this strategy, a fake hand is put on the box. When placing the part on the box, the robot begins to apply
a force on the arm. The monitor triggers a stop (see Figure 13), and so the force limit is not exceeded. It must
be underlined that this strategy does not prevent the robot to place the part on boxwhen there is no hand, i.e.,
when the external force occurs in the expected placing posiƟon. As a consequence the strategy is permissive.

Tilt box (SI1)
The robot is supposed to manipulate boxes, filled with parts. A hazard arises if some parts fall from the box
during manipulaƟon. In parƟcular it will happen, if the robot Ɵlts the box too much. Once more the hazard is
not considered very close to the table, as the box could simply not be Ɵlted.

VAR
alpha : Continuity(0,2,0);
d_grip : Continuity(0,1,0); -- 0: open, 1:is not open
z : Continuity(0,2,0);

VAR
box: 0..1;
ASSIGN init(box):=0;
next(box):= case

d_grip.v=0 & next(d_grip.v)=1 & z.v=0: 1;
next(d_grip.v)=0 : 0;
TRUE : box;
esac;

--!! Specify cata with state variables
DEFINE cata:= alpha.v=2 & box=1 & z.v=2;

The hazardous state is: a box is present in the gripper, the gripper posiƟon is such that the angle (in x and y
axis w.r.t. the table) is high, and the gripper is not close to the table. Nevertheless, the box presence is not

	

Page 21 of 30

ICT–287513 SAPHARI Deliverable D1.3.1

directly observable. The load observaƟon could be used. However the monitor is only able to recognize some
predetermined load values. As a box could be more or less filled, the load observaƟon is not useful. We build
a box observer, based on the hypothesis that a box can only be picked on the table, and is released when the
gripper opens.

The synthesized strategy is:
flag_stop =

alpha.v=1&z.v=1&d_grip.v=1&box=1
| alpha.v=2&z.v=1&d_grip.v=1&box=1
| alpha.v=1&z.v=2&d_grip.v=1&box=1

The strategy applies stop in every listed state.

(a) There is a box in the gripper, the Ɵlt is the
maximum safe Ɵlt. The robot is stopped by
the monitor. The strategy ensures safety.

(b) In absence of box, the Ɵlt is not con-
strained, i.e., the robot is not stopped. The
strategy is permissive.

Figure 14: Test of the Ɵlt strategy

The strategy is tested as presented in Figure 14.

General remarks
In the Java layer, the implementaƟon of the synthesized strategy is done quite easily. The strategy is used
directly. Some observaƟon funcƟons realize the discreƟzaƟon in values 0, 1, ... , from the real thresholds.

The strategies are presented separately. Nevertheless, they run all in parallel, such as the implementedmonitor
covers the three hazards as the same Ɵme.

	

Page 22 of 30

ICT–287513 SAPHARI Deliverable D1.3.1

Appendix B: Preliminary list of safety invariants

IntroducƟon
This appendix presents the safety invariants found by hazard analysis for the KUKA robot (OmniRob plaƞorm
and LBR arm). The safety invariants are the negaƟon (logical complement) of the hazards. We choose here to
express hazards instead of safety invariants as hazards are oŌen more understandable.

This document focuses on hazards, i.e., problems. The soluƟons to avoid the hazard (and ensure the safety
invariant) are the safety ruleswhich are not presented in this document. They are synthesized from the hazards
described here in a formal model (.smv files). The safety rules are available in .res files (or in the header of
.smv).

Each safety invariant is presented in this document as follows:
• Number. Name

• DescripƟon

• The use cases (UC fromUMLmodel, presented in [7]) where the hazard is relevant and in which the rules
are applied

• Formal expression of the hazard

• DescripƟon of the variables and parameters of the formal expression

• Remarks

• Hypotheses or assumpƟons about the environment, the system, the monitor resources.

• QuesƟons on issues that require clarificaƟons

Variables are denoted in lower case, fixed parameters and thresholds are denoted in upper case. VelociƟes
thresholds are indexed by the object (arm or plaƞorm) and the number of the hazard.

Unless otherwise stated, variables are available as AMF (Atomic Monitoring FuncƟon, observable variable in
KUKA terminology).

Hazards
1. Tilt box

DescripƟon A box is in the gripper. If the box Ɵlts too much, parts fall out.

Applied to all UC

Formal expression of hazard θ > θlim ∧ box ∧ z ∈ Zint

with
• θ is the minimum value of cartesian angles B and C (axis x and y) of the end-effector

• z is the z Cartesian posiƟon of the end effector. Zint defines an interval just above the table where
cannot be Ɵlted because of the table.

	

Page 23 of 30

ICT–287513 SAPHARI Deliverable D1.3.1

• box is an observaƟon of box presence based on sequenƟal observaƟon on z and gripper state (boolean
value open or closed)

Remarks May be duplicated to cover two angles (in x and y axis).

2. Collision with plaƞorm

DescripƟon The robot plaƞorm collides with a human.

Applied to all UC

Formal expression of hazard d = 0 ∧ vpf = 0

with
• d distance to the closest obstacle (given by laser scanner)

Remarks Taking into account inerƟa and the fact that stopping takes Ɵme, the hazard is modified to express
that the collision is unavoidable.

Formal expression of hazard vpf >
√
2.a.d

with
• d distance to the closest obstacle (given by laser scanner)

• A (parameter) maximum deceleraƟon. The value should take into account maximum braking and max-
imum acceleraƟon from the funcƟonal channel and due to environment.

Remarks For technical implementaƟon, square root may be difficult. It is equivalent to use v2pf > 2.A.d.

Hypotheses
• Every obstacle is sensed, i.e., visible at scanner height.

• d is conƟnuous. This requires that obstacles are sensable as soon as they are in laser range (they can be
hidden by sensed obstacle). This hypothesis forbids that obstacles arrive from the ceiling or from the
floor.

• Obstacles are fixed, or only the contribuƟon from the robot to the relaƟve velocity is taken into account
to define a collision.

3. Arm and plaƞorm velociƟes

DescripƟon The plaƞorm moves. The arm moves and collides with a human. The collision velocity is the sum
of the two velociƟes.

Applied to all UC

First formal expression of hazard vpf + varm > V3

with
• varm maximum velocity among the velociƟes of the seven axes of the robot arm

	

Page 24 of 30

ICT–287513 SAPHARI Deliverable D1.3.1

• vpf absolute plaƞorm velocity

Remarks Such a hazard is modelable by considering vpf + varm as one variable. In such a model, intervenƟons
(brake arm and brake plaƞorm) are difficult to model. Furthermore deciding which intervenƟon has to be
triggered is difficult too. For these reasons, we have chosen to modify the formal expression of the hazard.

Formal expression of hazard vpf > Vp3 ∨ varm > Va3

with
• Vp3 and Va3 are chosen such as Vp3 + Va3 < V3

• varm maximum velocity among the velociƟes of the seven axes of the robot arm

• vpf absolute plaƞorm velocity

Remarks The second expression is conservaƟve with respect to the first expression. Every hazardous state in
the first version is considered as hazardous in the second version. On the opposite some safe state are not
longer permiƩed.

Hypotheses
• States that saƟsfy vpf > Vp3 ∧ varm > Va3 ∧ varm + vpf < V3 are no longer permiƩed (even though

they are safe). The permissiveness loss is accepted.

Remark May be covered by SI7 and SI3. Depends on modificaƟon if SI7.

4. Gripper clamps human hand

DescripƟon The gripper fingers close on human part.

Applied to all UC

Formal expression of hazard None

Remarks The gripper is not able to clamp a human part by design. On the one hand, the distance between
gripper fingers is clearly larger than a human hand in closed posiƟon. On the other hand the distance in
opened posiƟon is barely larger than the box size such that no human part can be inserted between the box
and the finger.

Hypotheses No object in the environment is such that the gripper can clamps a human hand.

5. Workspace sharing

DescripƟon Collision in the parƟcular case of workspace sharing in workstaƟon B.

Applied to UC7 (Place box on a table), UC8 (Take box from a table)

Formal expression of hazard varm > Va5 ∧ human ∧ loc = workstaƟon

with
• varm maximum velocity among the velociƟes of the seven axes of the robot arm

	

Page 25 of 30

ICT–287513 SAPHARI Deliverable D1.3.1

• loc localizaƟon of the robot plaƞorm

• human human presence in the workstaƟon. Need sensing in the environment.

Remarks If the human presence is not observable, the condiƟon may be released. It require to accept a per-
misseveness loss.

QuesƟons Extend the invariant to UC5 (Give box to user), UC6 (Take box from user), UC15 (Manipulate a part
in robot gripper)?

6. Collision

DescripƟon The robot arm collides something with an high torque.

Permissiveness ExcepƟon We exclude from the hazard the region very close to the table to be able to place a
box on the table. SI16 covers the region close to the table.

Applied to all UC ? or only collaboraƟve UC ?

Formal expression of hazard ((σext > Σ6 ∧ varm ̸= 0) ∨ varm > V6) ∧ z ∈ freespace

with
• z cartesian posiƟon of the end-effector. 0 value is the table height.

• varm maximum velocity among the velociƟes of the seven axes of the robot arm.

• Σ6 (parameter) threshold of the collision detecƟon.

• σext external torque.

Remark The torque comparison is embedded in the collision detecƟon AMF. The external torques are com-
pared with threshold values to detect collisions. External torques are computed from the dynamic model in
combinaƟon with the joint torque sensor measurements. The collision detecƟon may give false detecƟon in
presence of inerƟal forces due to the plaƞorm acceleraƟon/deceleraƟon/turning. Torque cannot be defaultly
considered conƟnuous or controllable.

7. Collision with extended arm

DescripƟon Collision between a human and the robot arm that is extended beyond the plaƞorm footprint while
the plaƞorm is moving.

Permissiveness ExcepƟon (To be added)When the plaƞorm is close to the table, plaƞormmoƟonmay be needed
to take a box.

Applied to UC3 (Go to locaƟon), UC4 (Approach user)

Formal expression of hazard vpf ̸= 0 ∧ parm = beyond the plaƞorm

with
• vpf velocity of the robot plaƞorm. Here the observed variable can be the standsƟll monitoring.

	

Page 26 of 30

ICT–287513 SAPHARI Deliverable D1.3.1

• parm is the arm posiƟon. The predicate stands for at least one point of the monitoring spheres beyond
the plaƞorm (use of monitoring spheres and Cartesian workspace)

• loc localizaƟon of the robot plaƞorm

Remarks The predicate vpf ̸= 0 is both part of the hazard definiƟon and the expression of the use cases where
the invariant is applied.

Hypotheses
• The tool is configured in monitoring spheres

8. Robot in restricted area

DescripƟon The robot must not be in restricted area

Applied to all UC

Formal expression of hazard loc = restricted area

with
• loc localizaƟon of the robot plaƞorm

9. Plaƞorm moƟon overturn boxes on table

DescripƟon The gripper takes or places a box on a table. The plaƞormmoves, so the gripper moves horizontally
at box height. The gripper overturn boxes and sharp parts scaƩer on table.

Permissiveness ExcepƟon When the plaƞorm is close to the table, plaƞormmoƟonmay be needed to take a box.

Applied to UC7 (Place box on a table), UC8 (Take box from a table)

Formal expression of hazard vpf ̸= 0 ∧ loc = workstaƟon ∧ pee = above table

with
• pe posiƟon of the end-effector

• loc localizaƟon of the robot plaƞorm

• vpf velocity of the robot plaƞorm.

Remarks This hazard is a restricted version of hazard #7. It will be covered by the rules of #7.

QuesƟons Extend the invariant to UC1 (Take box from a shelf), UC2 (Place box on a shelf)?

	

Page 27 of 30

ICT–287513 SAPHARI Deliverable D1.3.1

10. Excessive arm velocity

DescripƟon In general, the arm velocity must be limited.

Applied to all UC

Formal expression of hazard varm < Va10

with
• varm maximum velocity among the velociƟes of the seven axes of the robot arm

11. Drop box

DescripƟon A box is in the gripper and is dropped anywhere but on table, robot storage, shelf or during han-
dover.

Applied to all UC

Formal expression of hazard

load = box ∧ next(load) = nobox ∧(
pee ̸= robot storage ∧

(
pee ̸= shelf ∨ loc = ¬storage area

)
∧ ¬(?(handover)?)

)
with

• pee posiƟon of end-effector. Drop zone is defined by a protected workspace on end-effector posiƟon
(and not on monitoring spheres).

• loc localizaƟon of the robot plaƞorm

• load is from the load determinaƟon

Remarks This hazard is a transiƟon rather than a state.

Hypotheses
• The gripping is done by form (and not by force).

QuesƟons
• How can the handover situaƟon be observed?

• How can the posiƟon of shelf and table with respect to the plaƞorm be observed?

12. Excessive plaƞorm velocity

DescripƟon In general, the plaƞorm velocity must be limited.

Applied to all UC

Formal expression of hazard vpf > Vp12

with
• vpf absolute plaƞorm velocity

	

Page 28 of 30

ICT–287513 SAPHARI Deliverable D1.3.1

13. Excessive arm velocity during interacƟon

DescripƟon During physical interacƟon, the arm velocity must be limited.

Applied to UC5 (Give box to user), UC6 (Take box from user), UC15 (Manipulate a part in robot gripper)

Formal expression of hazard varm < Va13 ∧ loc = quality control area

with
• loc localizaƟon of the robot

• varm maximum velocity among the velociƟes of the seven axes of the robot arm

Hypotheses
• InteracƟon is done only in the quality control area.

• In quality control area, no task requires varm > Va13.

14. Excessive plaƞorm velocity during guiding

DescripƟon The user moves the robot out of his way by guiding it (applying a force on robot arm). The plaƞorm
velocity must be limited during this step.

Applied to UC9 (Move the robot out of the way)

Formal expression of hazard vpf > Vp14 ∧ (uc=9)

with
• vpf absolute plaƞorm velocity

Remarks How to detect UC9 (Move the robot out of the way)?

QuesƟons How can UC9 (Move the robot out of the way)be detected ? The guidance posiƟon of the arm is not
saƟsfying from a safety point of view. What is the real hazard of this case ?

15. The handguiding is not followed

DescripƟon In the quality control workstaƟon, the user manipulates a box in the robot gripper by handguiding
the robot arm. The robot arm does not follow the handguiding.

Applied to UC15 (Manipulate a part in robot gripper)

Formal expression of hazard To Be Determined

Hint Using external force as an image of it the robot guided or not. Problem: external torque applied by the
human go through 0 values. Taking delayed aver age value. Apply a stop if no more handguiding.

QuesƟons Here themonitor lacks both observaƟon and intervenƟon. It is neither able to observe the handguid-
ing, nor to force the arm to move.

	

Page 29 of 30

ICT–287513 SAPHARI Deliverable D1.3.1

16. Clamping

DescripƟon The end-effector clamps a human part on table or robot storage. This hazard is effecƟve only when
the end-effector (empty gripper or box) is close to table.

Applied to UC7 (Place box on a table), UC8 (Take box from a table), UC10 (Place box on robot storage), UC11
(Take box from robot storage)

Formal expression of hazard TCPz > F16 ∧ pee ∈ W16

with
• W16 is a workspace close to table, robot storage... W16 may not touch the clamping surface.

• TCPz Cartesian external force at the end-effector along z axis. The external force is computed from the
dynamic model in combinaƟon with the measured joint torques. It can be considered conƟnuous if the
velocity is strongly limited.

Remark To be able to disƟnguish between clamping force (in z-axis) and placement force (in x and y axes), the
path should be purely verƟcal.

Remaining hazards
One hazard is not currently completely covered by the invariants. When the arm is taking or placing a box on
table, the gripper can overturn boxes due to a horizontal movement (if the movement is due to the plaƞorm, it
is covered by #9). There other similar situaƟons: instead of placing the gripper fingers on both sides of a box,
it can place fingers in boxes.

Themonitor may not be able to enƟrely cover this hazard due to the lack of observability (it does not know
where boxes are) and lack of intervenƟon (forbidding a horizontalmovement and allowing a verƟcalmovement
is not possible). This hazard is only of moderate severity.

General environment hypotheses
• The robot is always on a flat floor. There is no slope in the allowed area of the robot.

	

Page 30 of 30

	Introduction
	Baseline and concepts
	Concepts
	Process overview

	Safety rule production
	Tools
	System and intervention modeling
	Safety, permissiveness and validity modeling
	Synthesis algorithm
	Consistency between strategies

	Case Study
	HAZOP-UML hazard analysis
	Safety invariant formalisation
	Safety rule production
	Implementation

	Conclusions
	Appendix A: Implemented strategies
	Experimental setup
	Collision in free space (SI6)
	Clamping (SI16)
	Tilt box (SI1)
	General remarks

	Appendix B: Preliminary list of safety invariants
	Hazards
	Remaining hazards
	General environment hypotheses

