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1 Introduction

The capabilities that a biologic system can show, such as running, jumping, ma-
nipulating and interacting with the surrounding world, hitting, etcetera are very far
beyond what a robot can do. To reduce this gap it is essential that some features
of the state-of-the-art robots are substantially improved: i) the level of robustness
(both at intelligence and structural level), ii) the energy efficiency, iii) the flexibil-
ity to cope with unstructured environment, and iv) the peak performances, e.g. in
terms of speed and torque.

Two of the factors that substantially contribute to the improvement of these char-
acteristics are: control algorithms (from the lowest level to artificial intelligence)
and actuation system.

In the last three decades robotic actuators gained a richer behavior. However ac-
tively impedance controlled robots (technologically available today) have clear ad-
vantages w.r.t. position servo-actuators, still they presents substantial limitations:
low structural robustness against unpredictable impacts and high bandwidth re-
quired to the control system, to cite the most critical ones.The intrinsic dynamic
of existing actuators have been enriched to overcome such limitations via the in-
troduction of additional components. In Series Elastic Actuation (presented in [1])
an elastic element (with constant stiffness) was interposed between the motor and
the link, while in Variable Stiffness (for a complete review see [2]) and Variable
Damping (see [3]) actuators the actuation unit can physically change its dynamical
parameters, i.e. stiffness and damping. This new actuation paradigm, called Soft
Robotics.

Today the Series Elastic concept is available for research laboratories. An example
is Baxter (see Fig. 1) a humanoid torso realized by Rethink Robotics equipped
with two 7-DoF series elastic arms.

The most recent ideas like Variable Impedance are becoming available for re-
searchers. Among them, the qb move (a modular variable stiffness servo actuator)
is intended to be used as a rapid prototyping platform for experimental tests, and
it allows to drastically reduce the required resources to get access to soft robotics
technology. From the control point of view, the availability of Soft Robots has
opened the new challenge to find suitable control policies able to exploit the full
potential of this new technology.

Optimal control has been used to tackle this problem, in the safe brachistochrone
task [4] or in the max speed case [5, 6]. In [7] a framework for simultaneous
optimization of torque and stiffness, incorporating state and control constraints
is proposed. Conventional feedback control techniques have been applied to soft
robots [8] even though feedback control may substantially change the dynamic be-
havior of the system. An alternative approach is to take inspiration from what
humans do. This idea has been pursued through two different ways: (i) tele-
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Figure 1: Baxter: the adaptive, collaborative manufacturing robot realised by Re-
thinkRobotics

impedance, which introduces the human in the control loop [9]; (ii) model free
control laws [10]. The application of some of the aforementioned control tec-
niques to the VIAs in novel tasks has been explored, together with novel control
algorithms. Experimental validations of the achieved results are reported in this
work.

As pointed out in the WP8 Progress Report, it has to be noticed that the validated
results, reported in this work, may be useful in a future application of VSA in the
use cases investigated in the project:

• Hospital Scenario: environment with uncertainties due to both measure-
ments and variance in the dynamical parameters of the objects with which
the interaction has to be performed, high level of safety request

• Airbus and KUKA Scenarios: management of interaction with object with
not regular contact surface, energy efficiency in repetitive tasks
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2 Variable Stiffness Control for Oscillation Damping

In [] a model–free approach for damping control of Variable Stiffness Actuators
is proposed. The idea is to take advantage of the possibility to change the stiff-
ness of the actuators in controlling the damping. The problem of minimizing the
terminal energy for a one degree of freedom spring-mass model with controlled
stiffness is first considered. The optimal bang–bang control law uses a maximum
stiffness when the link gets away from the desired position, i.e. the link velocity
is decreasing, and a minimum one when the link is going towards it, i.e. the link
velocity is increasing. Based on Lyapunov stability theorems the obtained law has
been proved to be stable for a multi–DoF system. Finally, the proposed control law
has been tested and validated through experimental tests.

2.1 Problem Statement

The dynamic equation of a manipulator with elastic joints is:

M (q) q̈ + C (q, q̇) q̇ + G(q) = f (q�q ,s) � Bq̇

Iq̈ +Dq̇ = � f (q�q ,s) +u
(1)

where q 2 Rn is the link configuration vector and q 2 Rm the motor configuration
vector. M(q) 2 Rnxn is the inertia matrix of the manipulator, C(q, q̇) 2 Rnxn is the
centrifugal/Coriolis matrix, G(q) 2 Rn the gravity effect and B 2 Rnxn the matrix
of the viscous friction in the joints. I 2 Rmxm and D 2 Rnxn are respectively the
actuation inertia and the damping matrix. Finally, u is the control input. With
f (q� q ,s) we model the action of the elastic elements that realise the coupling
between the motors and the links. In this setting s represents an input for stiffness
control. For several VSAs it holds:

f (q�q ,g) =�K(g)(q�q) , (2)

where K(g) = diag(k(g)) is the stiffness matrix of the elastic transmissions. For
example, in an antagonistic VSA, the model (2) is valid around an equilibrium

Figure 2: Left: schematic of a 1 DoF soft actuator used for the optimal control
problem. Right: Optimal stiffness switching control provided in this work.
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position, with g =
qm,1�qm,2

2 and q =
qm,1+qm,2

2 , where qm,1 and qm,2 are the position
vectors of the two prime movers of each VSA of the robot. In the following we
assume that f (q�q ,g) has the form given in (2) and that k(g) is the vector control
input.

The problem we address in this paper is to find a model-free policy for adjusting the
stiffness k(g) for damping control of a variable stiffness robot, the model thereof
can be described by the (1).

2.2 One DoF VSA: Optimal Control

From (1), the typical dynamic equation for a single DoF VSA actuator is:

q̈+w2 (q�q) = 0 , (3)

where q is the link position, q is the motor position, w =
p

k/m is the natural
frequency of the system, m is the link inertia, and k is the stiffness. It is worth
noting that a damping parameter is not considered in (3). On the left of Fig. 2 a
representation of the model in exam is reported.

Given a final time T , in the following we consider q = q̂, 8t 2 [0, T ], where q̂
represents the desired link terminal position.

Given the state vector x(t) = [x1, x2]
T = [q�q , q̇]T 2 R2, the control input u(t) =

k2U = [kmin, kmax] with kmin and kmax minimum and maximum stiffness achievable
by the VSA respectively. The system dynamics in state form is:

ẋ = f (x,u) =


x2(t)
�w2x1(t)

�
. (4)

Having damping effect means to decrease the mechanical energy of the system.
This can be efficently obtained by minimizing the following quadratic cost func-
tion:

f (x(T )) =
x2

1(T )
2

+
x2

2(T )
2

,

for a fixed terminal time T .

Finally, the optimal control problem is:

minu(t) f (x(T ))
ẋ(t) = f (x,u)
x(0) = x0
0  kmin  u(t) kmax

,

where x0 = [x0,1 x0,2]T is the vector of the initial conditions.

The associated Hamiltonian function [11] is then:

H = l

T f (x,u) = l1(t)x2(t)�u(t)/ml2(t)x1(t) , (5)
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where l = [l1, l2]T 2 R2 is the costate vector.

According to the Pontryagin Maximum Principle (PMP) in [11], necessary con-
ditions on the optimal control u(t) can be derived by minimising (5). Since the
Hamiltonian is linear on u(t) we can conclude that the optimal control is bang–
bang like according to the following law:

u(t) =

(
kmax when l2(t)x1(t)> 0,
kmin when l2(t)x1(t)< 0.

(6)

Hence, the switching function of the Hamiltonian is s(t)= x1(t)l2(t) and a switch-
ing instant ts 2 [0, T ] is such that s(ts) = 0.

From the PMP optimality conditions the costate dynamics and terminal conditions
are:

l̇ (t)T = �∂H(x(t),u(t))
∂x(t)

=


w2

l2(t)
�l1(t)

�
(7a)

l (T ) =
∂f(x(T ))

∂x(T )
=


x1(T )
x2(T )

�
. (7b)

Since the stiffness (hence w) is piecewise constant, see (6), the states and costates
dynamics can be integrated in any time interval of amplitude Dt between two stiff-
ness consecutive switches, i.e. switching interval. Hence, from (4) and (7a) for
t 2 (0,Dt) we obtain:

x1(t) = x̄1 cos[w(t �Dt)] +
x̄2

w
sin[w(t �Dt)], (8a)

x2(t) = x̄2 cos[w(t �Dt)] � x̄1wsin[w(t �Dt)], (8b)

l1(t) = l̄1 cos[w(t �Dt)] + l̄2wsin[w(t �Dt)], (8c)

l2(t) = l̄2 cos[w(t �Dt)] � l̄1

w
sin[w(t �Dt)], (8d)

where l (Dt) = [l̄1, l̄2]T and x(Dt) = [x̄1, x̄2]T .

The optimal control problem can hence be solved computing the optimal switching
laws, i.e. when and under which conditions the control switches from the maxi-
mum to the minimum value and vice–versa.

The amplitude Dt of a switching interval can be computed considering a generic
final state (x̄1, x̄2), a generic final costate (l̄1, l̄2), the last switching instant ts (be-
fore Dt) and one of the two switching conditions x1(ts) = 0 or l2(ts) = 0. Without
loss of generality we consider the origin ts of Dt as ts = 0. Indeed, from (8), the
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amplitude of the switching interval:

Dtx =
2

wx
arctan

 
� x̄2

x̄1wx
+

s

1+
x̄2

2
x̄2

1w2
x

!
for x1(ts) = 0, (9)

Dtl =
2

w
l

arctan

 
l̄1

l̄2w
l

+

s

1+
l̄

2
1

l̄

2
2 w2

l

!
for l2(ts) = 0. (10)

An equivalent but less informative form is:

Dtx =
1

wx
arctan

✓
x̄1wx

x̄2

◆
, (11)

Dtl =
1

w
l

arctan
✓
� l̄2w

l

l̄1

◆
, (12)

where wx is the pulsation of the system in a Dtx, and w
l

in a Dtl respectively.

By applying condition (7b) in equations (11) and (12), one of the two amplitude
is negative based on the sign of the switching function in T . Thus, the sign of the
final state x(T ) influences the condition of the last switch of the sequence before
T :

if x1(T )x2(T )> 0, it holds x1(ts) = 0, (13)
if x1(T )x2(T )< 0, it holds l2(ts) = 0. (14)

The influence of final state on the last switching condition will be applied for any
switching interval Dt to reconstruct all the switches occurrences.

2.2.1 Concordant Terminal Conditions

Suppose that after n switches the terminal state verifies x1(T )x2(T )> 0. From (8)
and (13) the state and costate values at the last switching instant, denoted by tsn ,
are:

x1n = 0 x2n =
q

x2
2T + x2

1T w2
x

l1n =
x2T x1T (1�w2

x)p
x2

2T+x2
1T w2

x
l2n =

x2
2T+x2

1Tp
x2

2T+x2
1T w2

x
,

(15)

where x(tsn) = [x1n ,x2n ]
T , l (tsn) = [l1n ,l2n ]

T and wx is the pulsation in the switch-
ing interval [tsn ,T ], i.e., there are no other switches between ts and T . It follows that
a generic instant of time ti, ts < ti < T , in which x1(ti) = 0 or l2(ti) = 0 cannot ex-
ist. Moreover, from (13) and (15), x1(ti) and l2(ti) can only be positive and hence,

from (6), wx =
q

kmax
m that corresponds to the maximum control input. Thus, the

n-th switching variables in (15) are hence univocally determined. It is worth not-
ing that the obtained variables are the final state and costate values of the n�1-th
switching intervals.
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We analize the switching condition at the beginning of the n�1–th switch interval
[tsn�1 , tsn ] .

Consider first the case in which at time tsn�1 the switch is caused by l2(tsn�1) = 0.
From (10) and (15) we have

Dtl = 2
w

l

arctan(a +
p

1+a

2) . (16)

where a = x2T x1T (1�w2
x)

(x2
1T+x2

2T )wl

and w
l

=
q

kmin
m is the frequency in the switching interval

[tsn�1 , tsn ] that corresponds to the minimum control input.

Consider now the case in which at time tsn�1 the switch is still caused by x1(tsn�1) =
0. From (9) and (15) we have Dtx =

p

wx
. It can be shown that for any value of wx

Dtx > Dtl . Hence, the switch in tsn�1 is caused by l2 = 0.

2.2.2 Discordant Terminal Conditions

The same procedure can be applied for the case x1(T )x2(T ) < 0 where the last
switching condition is on l2. Considering (8) and (14), for the intervals [tsn�1 , tsn ]
and [tsn ,T ], defined equivalently as the previous case, the state and costate at tsn

are:
x1n =� x2

2T+x2
1Tp

x2
1T+x2

2T w2
l

, x2n =
x2T x1T (w2

l

�1)p
x2

1T+x2
2T w2

l

,

l1n =�
q

x2
1T + x2

2T w2
l

, l2n = 0 .
(17)

Hence, if x1(tsn�1) = 0, the switching interval [tsn�1 , tsn ] has amplitude:

Dtx =
2

w
l

arctan(�a +
p

1+a

2) , (18)

where a =
x2T x1T (1�w2

l

)

(x2
1T+x2

2T )wx
.

On the other hand, in case of l2(tsn�1) = 0, the interval for the switching on l is
Dtl = p

w
l

. It can be shown that for any value of w
l

Dtl > Dtx. Hence, the switch in
tsn�1 is caused by x1 = 0.

To conclude, the optimal switching sequence is characterized by alternate switch-
ing conditions on l2 and x1. Hence, the initial conditions can be determined as a
function of the final states for any number of switches n. For space limitations those
computations are not herein reported. However, a similar procedure is applied next
to a particular case that will be proved to play a crucial role in the definition of a
model–free control law.

2.2.3 Null Terminal Position/Speed Case

We now consider the particular case of minimizing the energy at a given final time
T with the additional condition that the desired amount of energy is concentrated
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in the kinematic or in the elastic potential term, i.e. one of the terminal states value
x(T ) is zero.

We start considering a generic switching interval d1 = [0, Dt1] with x1(Dt1) =
l1(Dt1) = 0. Notice that at time Dt1 the switching condition (13) is verified. For
the alternate sequence of switching conditions we have l2(0) = 0, i.e. the switch-
ing condition (14) must be verified at the initial instant of d1. Hence, from (8d),
we obtain Dt =

p

2w
l

or l2(Dt) = 0 where the latter contradicts the alternance of
switches.

Moreover, for Dt =
p

2w
l

, from (8) the initial state and costate values are:

x1(0) = �x2(Dt)

w
l

, x2(0) = 0 , (19)

l1(0) = �l2(Dt)w
l

, l2(0) = 0 . (20)

For the second case of null final speed, we consider again a generic switching inter-
val d2 = [0, Dt2] with x2(Dt2) = l2(t) = 0. At time Dt1 the switching condition (14)
is verified and hence the switching condition (14) must be verified at the initial
instant of d2, i.e. x1(0) = 0. From (8a), we obtain Dt = p

2wx
or x1(Dt) = 0 where

the last condition contradicts the alternance of switches. Hence, from (8) the initial
state and costate values are:

x1(0) = 0 , x2(0) = x1(Dt2)wx , (21)

l1(0) = 0 , l2(0) =
l1(Dt2)

wx
. (22)

It is worth noting that the obtained initial conditions for d1 (d2) coincide with the
assumption on the final condition of d2 (d1). We can then consider an arbitrary
number n of sequences of alternate switching intervals d1 and d2 depending on the
state values at time T . Indeed, in case of null final speed or position, the terminal
time T coincides with the last switching time tsn . Moreover, in case of x1(T ) = 0
we have [tsn�1 , T ] = d1 while if x2(T ) = 0 we have [tsn�1 , T ] = d2.

The state and costate values at a generic switching time tsk can thus be obtained.
For the case of null final position and for odd k we have:

(x1 (tsk) , x2 (tsk)) =

 
�x2T

w(k�1)/2
x

w(k+1)/2
l

sin
✓

kp

2

◆
, 0

!
,

(l1 (tsk) , l2 (tsk)) =

 
�x2T

w(k+1)/2
l

w(k�1)/2
x

sin
✓

kp

2

◆
, 0

!
,

10



while for even k:

(x1 (tsk) , x2 (tsk)) =

 
0, x2T

wk/2
x

wk/2
l

cos
✓

kp

2

◆!
,

(l1 (tsk) , l2 (tsk)) =

 
0, x2T

wk/2
l

wk/2
x

cos
✓

kp

2

◆!
.

Given the sequence of n switching intervals, in the n� k-th interval the switching
function is sk = x1(t)x2(t)p(k) where p(k) = (w

l

/wx)k for even k and p(k) =
(w

l

/wx)k+1 for odd k.

For the complementary case of null final speed, for odd k we have:

(x1 (tsk) , x2 (tsk)) =

 
0, x1T

w(k+1)/2
x

w(k�1)/2
l

sin
✓

kp

2

◆!
,

(l1 (tsk) , l2 (tsk)) =

 
0, x1T

w(k�1)/2
l

w(k+1)/2
x

sin
✓

kp

2

◆!
,

while for even k:

(x1 (tsk) , x2 (tsk)) =

 
x1T

wk/2
x

wk/2
l

cos
✓

kp

2

◆
, 0

!
,

(l1 (tsk) , l2 (tsk)) =

 
x1T

wk/2
l

wk/2
x

cos
✓

kp

2

◆
, 0

!
.

Given the sequence of n switching intervals, in the n� k-th interval the switching
function is sk = x1(t)x2(t)r(k) where r(0) = p(0) and r(k) = p(k)/w2

x otherwise.
Since r(k)> 0 the optimal stiffness control policy can be described by

u =

(
kmax if (q�q)q̇ > 0,
kmin if (q�q)q̇ < 0.

(23)

Remark 1 In case of final null position or velocity, the switching function s ,
whose sign determines the optimal switching law, does not depend on the model
parameters. Hence, the obtained control law is model–free. On the right of Fig.
2 a scheme of the control law is showed. Moreover, for the considered model the
control law in (23) can be written as u = kmax if q̈q̇ < 0 and u = kmin if q̈q̇ > 0 that
is the opposite of the control law found [12] and [6] where the objective was to
maximize the link terminal speed.

2.3 Control of a multi DoF VSA Robot

In this section we apply the model-free stiffness control policy derived in the pre-
vious section to the VSA multi DoF robot model described by the equation (1). It
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is worth to note that in (1) the damping effect is considered with the contribution
�Bq̇. We assume that the motor provides a torque input u such that the motor po-
sition q is set to bring the robot at the desired equilibrium position q̂. In absence of
gravity it is q = q̂. In [13] it is shown that also in presence of gravity a q 6= q̂ can
be found so that q converges to q̂. Hence, gravity does not affect the applicability
of the proposed controller since it acts only on the stiffness input k(s), and hence
from now on in the analysis we consider q = q̂ = 0.

In the following we motivate the application of the proposed algorithm through
Lyapunov like arguments.

Consider now the state vector x = [q, q̇]T , the kinetic energy T , the gravitational
energy Ug, and the minimum elastic energy Ukmin = 1/2(q �q)T Kmin(q �q) of the
link dynamics described by the first equation of (1) where Kmin = diag(kmin). The
following Lyapunov candidate can be derived:

V (x) = T +Ug +Ukmin =
1
2

q̇T M (q) q̇ +Ug (q)+Ukmin(q ,q) .

The time variation of the previous equation is:

V̇ (x) = ∂V
∂x ẋ = q̇T M (q) q̈+ 1

2 q̇T Ṁ (q) q̇+G(q)T q̇+
(q�q)T Kmin(q̇� q̇) .

(24)

By substituting (1) in (24) and considering that Ṁ(q)= 2C(q, q̇)q̇ it follows:

V̇ (x) = �q̇T Bq̇� q̇T (K(g)�Kmin)(q�q) . (25)

By applying the optimal control policy given in (23) for each component of the
control vector K(g), the (25) is negative semi-definite. Nevertheless, since the only
trajectory that lays in R = {x|V̇ (x) = 0} is zero is the equilibrium, by applying the
Krasovskii-Lasalle theorem it is possible to conclude for the asymptotic stability
of the origin.

The effect of the control law (23) in the multiple DoF system is to increase the rate
of convergence to the equilibrium point since it minimises the (25), i.e. it dissipates
as much energy as possible by adjusting the stiffness. It is worth noting that, even
though the control law in (23) has been obtained based on the damping–free system
(3), in this section it has been shown that it is stabilizing also for systems with
viscosities.

2.4 Simulations and Experiments

In this section the simulation for a single DoF robot and the experiments on single
and multi DoF VSA are proposed. In Fig. 3 the schemes of the considered system
are reported.

12



Figure 3: (a) Scheme of the 1 DoF and 2 DoF planar arms used for the simulations
and experiments. The revolute joints are indicated as qbmove1 and qbmove2. (b)
Experimental setup for the 2 DoF case.

2.4.1 Simulation results

A link of mass m with the center of mass posed at distance d is connected to a VSA
which can instantaneously change the stiffness between the motor and the link in
the interval [kmin,kmax]. A viscous friction b acts on the joint. Let q be the position
of the motor, q̂ the equilibrium position of the link and q the link position. The
actuator dynamic is neglected and gravity doesn’t affect the system.

In the simulation the motor position q is set equal to the desired link equilib-
rium position q̂. A representation of the model can be observed in the 1 DoF
case of in Fig. 3 (a) which is an equivalent implementation of the system pre-
sented in Fig. 2. The dynamic parameters of the system are: the mass m =
0.226 [Kg], the distance of the mass from the center of rotation d = 0.1 [m], the
rotational inertia of the link Irot = 0.001[Kgm2] , the maximal and minimal stiff-
ness [Kmax,Kmin] = [1, 0.3] [Nm/rad] respectively and the module of the viscous
friction b = 0.01

⇥
Nms2/rad2⇤. The link starts from the equilibrium configuration

and receives an impulsive external torque of 1Nm after 0.2s. In the first and second
simulations the actuator is controlled to generate a constant stiffness, at minimum
and maximum values respectively. Finally, in the third simulation the stiffness is
regulated according to the control law (23). In Fig. 4 the results of the simula-
tions are shown for the three different inputs. The time, from the impact instant,
to reach an error position that remains in a neighbourhood of the origin of radius
0.05rad, has been evaluated. Such settling times are indicated in figure with ver-
tical dot lines and their values are: 2.06s for the minimum stiffness case, 2.18s
for the maximum stiffness case, and 0.93s for the optimal control case (where the
impact was at t = 0.2s). In this case, the stiffness switching control produces an
improvement of 100% of the settling time with respect to the constant stiffness
cases.
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Figure 4: Top: stiffness evolution under constant minimum and maximum inputs
and under the proposed control law. Bottom: evolutions of the link error positions.

2.4.2 Experimental Setup and Implementation

Two planar robotics arms, 1 DoF and 2 DoF respectively, have been realised with
qbmove actuators based on the VSA Cube [14] (see [15] for the datasheet with
the main actuators characteristics). The first arm uses another qbmove actuator
connected to the first by a shaft as inertia. The second arm uses two qbmove
actuators connected to the last active joint by a shaft as inertia. The systems are
mounted on a structure to be not influenced by the gravity as shown in Fig. 3.
On the top of the structure a pendulum is used to simulate the disturbance, i.e. an
impact at the end of the arm.

For the one degree of freedom experiment we compared four different cases: un-
controlled oscillation of the system, PID control based on error position of the link
for a constant stiffness reference (half of the range of the qbmove), the bang-bang
position control presented in [13] with the bring back motion generated by a PID,
and the control law obtained with the proposed approach. This has been repeated
for two different inertia values. The stiffness control is realised by adjusting the
stiffness preset g = (qm,1�qm,2)/2. This is possible since the control is bang–bang
like and the stiffness of the qbmove is a monotonic function of the preset. In Fig. 5
we present a comparison of the link position evolution of the 1 DoF system (with
1-actuator-link) in case of an impact after 1 second under different controls: sys-
tem at maximum stiffness with null control, PID control, the bang–bang position
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Figure 5: Top: Link position evolution for different control strategies applied to
the 1 DoF system. In red, the evolution in case of the control law proposed in
this paper. Bottom: Link position evolution for two different implementation of
Bang–Bang position control.

control presented in [13] and the proposed stiffness switching control law. The PID
control and the one used for the bring back phase in the bang–bang position con-
trol, in [13], have been experimentally tuned. The tuned PID shows the best result
in term of settling time which is comparable to the stiffness switching control. In
the bottom of Fig. 5 two implementation of the Bang–Bang position control are
shown. Those controls differ in the timing of the bring back phase and PID. The
performance of the control is influenced by the dynamic of the actuator and the
control used in the bring back motion.

In Fig. 6 a further comparison is implemented where the inertia of the link is dou-
bled. The proposed control law is now compared with two other PID controls:
the PID1 tuned on the new system characteristics and PID2 is the same PID con-
trol law used in the previous set of experiments with lower inertia. The stiffness

15
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Figure 6: Link position evolution for different control strategies applied to the 1
DoF system in case of a (almost) double link inertia w.r.t. the case presented in Fig.
5. The PID control presents the best performance but it is tuned on the particular
system. The stiffness switching control Ksw presents a performance comparable to
the performance of PID 1 despite the increased inertia.

switching control Ksw shows robustness to the inertia variation and a performance
comparable with the PID1 opportunely tuned. On the other hande, the PID2 shows
instability.

Since the qbmove has a stiffness variation time of 0.1 seconds from the minimum
to the maximum stiffness values, when the link oscillations happen at a too high
frequency the stiffness cannot change instantaneously. For this reason it has been
implemented a stiffness control law based on thresholds (experimentally evaluated)
on the position and the velocity of the link in order to anticipate the stiffness switch-
ings. A comparison between the theoretical and the threshold–based approach for
the one degree of freedom case is reported in Fig. 7. In Fig. 8 and 9 we present the
experimental results for the two degrees of freedom case and the comparison be-
tween the controlled system (with the law (23)) and the uncontrolled system with
low and high stiffness configurations. The comparison shows that the switching
control law guarantees an improvement of 25% of the settling time w.r.t the stiff
case.

It is worth noting that in Fig. 7 and 8 the stiffness is measured in [deg] in the
range [0, 35] deg that is equivalent to a stiffness values of [0.3, 13]Nm on the output
shaft.
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Figure 7: Link position and preset evolution for the one DoF case with the theoret-
ical control (top) and thresholds–based control (bottom) to anticipate the switching
instants
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Figure 8: Links position evolution for the stiffness switching control applied to the
two DoF case. The reference switchings of the preset are reported in black while
the measured preset is in red. The settling time from the impact to reach the desired
position with an error of ±2deg (in green) is Tsw1 = 2.098s and Tsw2 = 2.078s for
the first and second link respectively.

2.4.3 Discussion

In the following we discuss advantages and drawbacks of the proposed control
approach w.r.t. existing controllers. 17
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Figure 9: Links position evolution for the uncontrolled 2 DoF system with constant
preset. The evolution of the links after the impact in case of maximum preset are
indicated in red, while in case with minimum preset are indicated in blue. The
settling times in the stiff case are Tsti f f1 = 2.438s ,Tsti f f2 = 2.032s for first and
second link respectively, while for the soft case Tso f t1 > 8s , Tso f t2 = 5.738s.

An advantage is the fact that the stiffness control law does not depend on the model
of the system, furthermore it relies on the detection of state events (i.e. zero cross-
ing of deflection and velocity). Furthermore, even though the dynamical system
differs from the nominal one the obtained control law can be still applied. While,
in this case, optimality cannot be guaranteed anymore, the Lyapunov based analy-
sis proves that using the control law in case of damping at the link side the settling
time of the system is improved. Moreover the proposed approach can be profitably
used to stabilise a multidof VSA robot. These characteristics, belonging also to
the controller presented in [13], make it relatively easily applicable to a variety of
systems since it does not requires a carefully identified model. A difference w.r.t.
the law found in [13] is that the stiffness switching control law does not require a
further control to bring the system to the desired position.

An important limitation is that if the stiffness regulation time is limited, the con-
troller performance decays and the stiffness switchings must be anticipated to
achieve better damping performances (see Fig. 7). Since the controller does not
take into account the inertia coupling a model-based controller (provided with an
accurate model) can have higher performance.

A further approach to control VSA robots that has been proposed in recent years
is the tele-impedance. In this approach the stiffness regulation of the robot is tele-
operated by a human being. In [9] it has been studied the task of catching a ball with
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a Kuka LIghtWeight robot where the stiffness is regulated with the tele-impedance
approach. The reported data (Fig. 6 Tele-Impedance and Fig.7 End Point Stiffness
in section IV Results in [9] present a peak of End Point stiffness at the beginning
of the task. The temporal evolution of the stiffness and error position of the end
effector seems to suggest that the stiffness is increased when the end effector of
the robot is getting away from the desired position and it is decreased when the
end effector is coming back toward the desired position. This is similar to the
behaviour of the system under the control policy presented in this paper. However,
further studies are required to drawn proper conclusions.

2.5 Conclusions

In this paper a model–free approach for damping control of VSA robots through
stiffness variation has been proposed. The stiffness control law has been derived by
analytically solving the optimal control problem of minimizing the terminal energy
for a one DoF spring-mass model with controlled stiffness. The stiffness switching
control law uses a maximum stiffness when the link gets away from the desired
position and a minimum one when the link is going towards it. A preliminary
analysis of data presented in the literature seems to suggest that the proposed law
could explain how humans change their stiffness for oscillation damping. Based
on Lyapunov stability theorems the obtained law has been proved to be stable for a
multi–DoF system. Simulations and experimental tests that validate the theoretical
results have been reported.
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3 Minimizing Energy Consumption in Soft Robots

In this work we consider the problem of reducing the energy consumption of com-
pliant mechanical systems during desired motions, e.g. cyclic, such as those re-
quired in many robotic tasks. We start by proposing a general method that deter-
mines the optimal soft actuation parameters, i.e. stiffness value and spring pre-load,
that minimize a cost functional for given link trajectories. We provide simulations
and an experimental validation of the analytic results obtained, applying them to
a two-link compliant manipulator platform actuated by SEAs, which performs a
repetitive Pick and Place task. We then tackle the more complex problem of con-
currently optimizing soft actuation parameters and link trajectories. We apply this
procedure to the two-link manipulator to determine the optimal trajectories by us-
ing numerical optimization tools. At the end, we show by simulations and experi-
ments that the simultaneous optimization of stiffness and trajectories improves the
performance of the system in terms of the energy consumption with respect to the
case in which only the stiffness is optimized.

3.1 Problem Statement

Mechanical systems can be fully actuated, if there are as many actuators as Degrees
of Freedom (DoF) or underactuated, if there are less control inputs than DoF (see
[16]). Moreover, depending on how and where the springs are placed in the system,
the dynamics of a mechanical system can assume particular forms. In this section,
after showing the different mechanical systems considered in this paper and their
dynamical models, we will discuss the cost functionals used to quantify the energy
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consumption and finally we will state the optimization problem.

3.1.1 Fully Actuated and Underactuated Mechanical Systems

• Fully Actuated Mechanical Systems: Let us consider a fully actuated com-
pliant mechanical system actuated by PEAs. In this case, the number of
DoFs is equal to the number of actuators. Indicating by q 2 ¬n the general-
ized coordinates representing the configuration of the system and by t 2 ¬n

the generalized torque provided by actuators, the dynamics can be written as

f (q̈, q̇,q, t) = K(qe �q)+ t , (26)

where qe 2 ¬n is the spring pre-load and K 2 ¬n⇥n is the stiffness matrix.
The term f (q̈, q̇,q, t) includes inertia, coriolis, and gravity terms1.

Consider now a mechanical system actuated by SEAs, which is underactuated.
Indicating by q 2¬n the motor positions and by Jm the inertia matrix of the motors,
the dynamics can be written as2

f (q̈, q̇,q, t) =�K(q�q) (27)

Jmq̈ = K(q�q)+ t , (28)

Notice that the use of SEAs instead of PEAs increases the number of DoFs, which
become 2n, while the control inputs remain n.

Remark 2 Underactuated Mechanical Systems
For particular mechanical systems there may be further non-actuated DoFs, e.g. the
position and orientation of humanoids w.r.t. a fixed reference frame. Let z 2 ¬m be
those DoFs and assume the system is actuated by SEAs. The dynamics in this case
can be written as

fu(z̈, ż,z, q̈, q̇,q, t) = 0 (29)
fa(z̈, ż,z, q̈, q̇,q, t) =�K(q�q) (30)

Jmq̈ = K(q�q)+ t, (31)

where (29) represents the non-actuated dynamics, whereas (30) and (31) represent
the underactuated dynamics.

Of course, if PEAs are used, the dynamics becomes

fu(z̈, ż,z, q̈, q̇,q, t) = 0 (32)
fa(z̈, ż,z, q̈, q̇,q, t) =�K(qe �q)+ t . (33)

1the actuator itself is considered rigid
2viscous friction term is not written to make analytical calculations simpler. Adding the cor-

responding term does not change the procedure. In the experimental tests presented in this paper,
viscous friction is indeed considered.
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By integration, in the SEA case from (29) it is possible to find z as a function of the
desired trajectories qd(t). Hence, by substituting in (30) and (31), we obtain

f (q̈d , q̇d ,qd , t) =�K(qd �q) (34)

Jmq̈ = K(qd �q)+ t , (35)

which has the same form of (27) and (28). Similarly, in the PEA case from (32)
we may obtain (26). Therefore, the analysis proposed herein is valid for every
underactuated system.

3.1.2 Performance Indices

To quantify the performance of the mechanical systems and hence to determine the
optimal joint stiffness K̂ and pre-load q̂e values (the latter for PEAs), as well as
the optimal link trajectories q̂(t), two different cost functionals will be considered,
namely, Squared Power J1 and Squared Torque J2.

• Squared-Power Index
Assume that a motor is not able to recover energy from negative work, then
it spends energy if the mechanical power is positive or negative. Consider
that the motor requires a torque t to generate a change of position of q , with
velocity q̇ . The mechanical power is P = tq̇ . The proposed index represents
the squared mechanical power accumulated in a period T .

J1 =
n

Â
j=1

Z T

0
(t j(t)q̇ j(t))2dt , (36)

Notice that in the case of PEA q̇ j changes to q̇ j.

• Squared-Torque Index
There is a direct relation among the torque required to produce a motion
and the energy consumed by the motors when performing that motion. The
proposed index represents the square of the torque t required to move the
j-th joint in a period T .

J2 =
n

Â
j=1

Z T

0
t

2
j (t)dt . (37)

The physical relevance of these indices will be discussed in the next section.

3.1.3 Optimization Problem

In this paper we consider the problem of determining optimal link stiffness K̂
and/or pre-load q̂e, as well as optimal link trajectories q̂(t), such that the cost func-
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tionals J1 or J2, are minimized, i.e. the following optimization problem:

min
t(t),b ,q

Ji(q, q̇, q̈,b (q)), i 2 {1,2}

s.t.

8
>>>>>><

>>>>>>:

Dynamics equations
q(t) = q(t +T )
x1(q, q̇, q̈) 0
x2(q, q̇, q̈) = 0
bm  b  bM

(38)

where the term Dynamics equations corresponds to (26) or both (27) and (28),
depending on the actuation case. b is a vector containing both joint stiffness K and
pre-load qe in case of PEAs, whose limits are bM = [KM, qe,M] and bm = [Km, qe,m];
or only stiffness K in case of SEAs, whose limits are bM = KM and bm = Km.
Finally, the nonlinear constraints x1 and x2, which depend on the variables q, q̇,
and q̈, define the task. For instance, in the pick and place task for a two-link planar
manipulator, we constrain the motion of the end-effector to the line between two
specific points.

3.2 Optimization of Stiffness and Pre-Load Parameters

In this section, we derive the actuation parameters of the mechanical systems pre-
sented previously, actuated by SEAs or PEAs. In the following, we assume that
K = diag[K1,K2, ...,Kn] and Jm = diag[Jm1,Jm2, ...,Jmn], which is valid for the ma-
jority of the mechanical systems. Once the optimal actuation parameters are ob-
tained as a function of the chosen set of desired link trajectories qd(t), we show
how the problem of optimizing the actuation parameters and the link trajectories
can be cast in a simpler problem where the optimization regards only the trajecto-
ries, which can then be optimized for instance by Sequential Quadratic Program-
ming [17], Nonlinear Programming or other suitable optimization methods [18]. At
the end, a solution for the trajectory optimization problem is also provided.

For the sake of space, we only present the procedure to derive the optimal stiffness
in case of mechanical systems actuated by SEAs. The same procedure presented
here can be applied with slight differences to the other mechanical systems actuated
by SEA or PEA and considering indices (36) or (37).

Let us assume that link trajectories q(t) = qd(t) and its first q̇(t) = q̇d(t) and second
q̈(t) = q̈d(t) derivatives are given, and consider a mechanical system described
by (27) and (28), which can be written as follows, because the matrices K and Jm
are assumed to be diagonal,

f j(q̈d , q̇d ,qd , t) =�Kj(qd, j �q j) , (39)

Jm j q̈ j = t j +Kj(qd, j �q j) , (40)

23



for j = 1,2, . . . ,n, which denotes the j-th actuator of the system.

Remark 3 In this paper we find an analytical solution in cases where it is clear
to gain insight, i.e. assuming that K and Jm are diagonal matrices. However, for
systems whose stiffness or motor’s inertia matrices are not diagonal, (39), and (40)
are not valid. For example, [19] presents a compliant underactuated finger with
non-diagonal stiffness matrix. In these cases, the analysis can be carried out if the
stiffness matrix is invertible. ⇧

From (39) we obtain the motor position and then its velocity and acceleration,

q j = K�1
j f j(q̈d , q̇d ,qd , t)+qd, j , (41)

q̇ j = K�1
j ḟ j(q̈d , q̇d ,qd , t)+ q̇d, j , (42)

q̈ j = K�1
j f̈ j(q̈d , q̇d ,qd , t)+ q̈d, j . (43)

Replacing (41) and (43) in (40), the j-th motor torque required to track the desired
trajectory qd, j(t) is

t j = Jm j(K
�1
j f̈ j(q̈d , q̇d ,qd , t)+ q̈d, j)+ f j(q̈d , q̇d ,qd , t) , (44)

which corresponds to the inverse dynamics of the system.

We rewrite the cost index J1 in terms of qd(t), its derivatives, and the stiffness K.
The element related to the j-th actuator is

J1, j =
Z T

0
(t j(t)q̇ j(t))2dt . (45)

By substituting (42) and (44) in (45), we obtain

J1, j =
Z T

0
(t j(t)q̇ j(t))2 dt

=
Z T

0
((Jm j K

�1
j f̈ j + Jm j q̈d, j + f j)(K�1

j ḟ j + q̇d, j))
2 dt

=
Z T

0

 
a j(t)
K2

j
+

b j(t)
Kj

+ c j(t)

!2

dt

where a j(t) = Jm j f̈ j ḟ j; b j(t) = Jm j( f̈ j q̇d, j + ḟ j q̈d, j) + f j ḟ j; and c j(t) = Jm j q̈d, j q̇d, j +
f jq̇d, j.

J1, j depends only on the stiffness Kj of the j-th actuator, hence

min
K

J1 = Â
j

min
Kj

J1, j .
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The optimal solution for each Kj is such that ∂J1, j
∂Kj

= 0 which, after some algebra
becomes

4AS, j +3KjBS, j +2CS, jK2
j +DS, jK3

j = 0 , (46)

where
AS, j =

Z T

0
a2

j(t)dt , BS, j =
Z T

0
2a j(t)b j(t)dt

CS, j =
Z T

0
(2a j(t)c j(t)+b2

j(t))dt

DS, j =
Z T

0
2b j(t)c j(t)dt .

AS, j, BS, j, CS, j, and DS, j depend only on qd, j, q̇d, j, q̈d, j, and f (·) which are assumed
to be known.

For the cost functional J2, the j-th element related to the j-th actuator is

J2, j =
Z T

0
t

2
j (t)dt .

After substituting (44), and with some algebra, we obtain

J2, j =
FS, j

K2
j
+

GS, j

Kj
+HS, j , (47)

where
FS, j =

Z T

0
(Jm j f̈ j)

2dt , HS, j =
Z T

0
(Jm j q̈d, j + f j)

2dt ,

GS, j =
Z T

0
2Jm j f̈ j(Jm j q̈d, j + f j)dt .

Also in this case J2, j depends only on the stiffness Kj of the j-th actuator. Hence,

min
K

J2 = Â
j

min
Kj

J2, j .

The optimal solution for each Kj is such that ∂J2, j
∂Kj

= 0, obtaining

K̂ j =�2
FS, j

GS, j
. (48)

Table 1 summarizes the expressions for the optimal actuation parameters for in-
dices J1 and J2 either for SEAs and for PEAs.

The optimal value for stiffness K and pre-load qe obtained before are not necessar-
ily inside the admissible range of values. In this case, the optimal values will be on
the boundary of the admissible set of values.
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J1 J2

SEA A solution of (46) K̂ j =�2 FS, j
GS, j

PEA
K̂ j =

BP, jEP, j �2CP, jDP, j

4DP, jFP, j �E2
P, j

q̂e, j =
CP, jEP, j �2BP, jFP, j

2CP, jDP, j �BP, jEP, j

K̂ j =
q̂e, jHP, j � IP, j

2(q̂2
e, jT +LP, j � q̂e, jMP, j)

q̂e, j =
HP, j + K̂ jMP, j

2K̂ jT
Parameters

AP, j =
R T

0 f 2
j q̇2

d, jdt , BP, j =
R T

0 2 f jq̇2
d, jdt ,

CP, j =
R T

0 2 f jq̇2
d, jqd, jdt , DP, j =

R T
0 q̇2

d, jdt ,
EP, j =

R T
0 2q̇2

d, jqd, jdt , FP, j =
R T

0 q̇2
d, jq

2
d, jdt .

Table 1: Optimal parameters K̂ and q̂e.

For the SEA case, the cost functional J2 has a unique global minimum and hence,
if such value is not admissible, then

K̂ =

(
Km if Ji(Km)< Ji(KM)

KM if Ji(KM)< Ji(Km) .
(49)

On the other hand, for cost functional J1, the optimal stiffness value can be obtained
solving (46) which has three solutions. Hence, the optimal stiffness can be one of
these solutions or it can lie on the border of the admissible range of values.

For PEA, the performance index depends on the two optimization variables K and
qe. However, both cost functionals have a unique global minimum. Hence, if
the optimal values are such that K̂ /2 [Km KM] and/or q̂e /2 [qe,m qe,M], then the
optimal parameters are in the border of the admissible range of values. Consider
the following cases:

1. if K̂ /2 [Km KM] and q̂e 2 [qe,m qe,M]. In this case, if ∂J1, j
∂Kj

= 0 is satisfied by
q̂e,

K̂ =

(
Km if J(Km, q̂e(Km))< J(KM, q̂e(KM)) ,

KM if J(KM, q̂e(KM))< J(Km, q̂e(Km)) ;

2. K̂ 2 [Km KM] and q̂e /2 [qe,mqe,M]. In this case, if ∂J1, j
∂qe, j

= 0 is satisfied by K̂,

q̂e =

⇢
qe,m if J(K̂(qe,m),qe,m)< J(K̂(qe,M),qe,M)

qe,M if J(K̂(qe,M),qe,M)< J(K̂(qe,m),qe,m) ;

3. K̂ /2 [Km KM] and q̂e /2 [qe,m qe,M], then the optimal pair K̂, q̂e is related to the
minimum value among the following: J(Km,qe,M), J(KM,qe,M), J(Km,qe,m)
and J(KM,qe,m).
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Remark 4 In (26), as well as in (27), (28), the stiffness is linear. Now, let us
analyse the case in which the stiffness is nonlinear. In general, we can write the
dynamics as a function of the nonlinear spring force as

f (q̈, q̇,q) =�s(q�q) (50)

s(q�q) = (K1(q�q)+K2(q�q)2 + · · ·+Ki(q�q)i) (51)

where s(q�q) is a generic monotonic function of the elongation.

For the SEA case, it holds

f (q̈, q̇,q) =�
n

Â
i=1

Ki(q�q)i (52)

Jmq̈ =�
n

Â
i=1

Ki(q�q)i + t . (53)

Similarly, for the PEA case it yields,

f (q̈, q̇,q, t) =
n

Â
i=1

Ki(qe �q)i + t . (54)

Consider for example the following case, of a n-DoF system actuated by SEA, with
n = 3, and K1 = K2 = 0, K3 = K, then replacing in (52) and (53), it yields

f (q̈, q̇,q, t) =�K(q�q)3 (55)

Jmq̈ = K(q�q)3 + t , (56)

and following the same procedure as presented before, we have

q j = (K�1
j f j(q̈d , q̇d ,qd , t))1/3 +qd, j ,

q̇ j = (K�1
j f j(q̈d , q̇d ,qd , t))�2/3 ḟ j(q̈d , q̇d ,qd , t)+ q̇d, j ,

q̈ j = (K�1
j f j(q̈d , q̇d ,qd , t))�5/3 ḟ j(q̈d , q̇d ,qd , t)+

(K�1
j f j(q̈d , q̇d ,qd , t))�2/3 f̈ j(q̈d , q̇d ,qd , t)+ q̈d, j .

So, the torque to track the desired trajectories is

t j = Jm j(K
�1
j f j(q̈d , q̇d ,qd , t))�2/3((K�1 ḟ j(q̈d , q̇d ,qd , t))+ q̈d, j+

(K�1
j f j(q̈d , q̇d ,qd , t))�2/3 f̈ j(q̈d , q̇d ,qd , t)+ f j(q̈d , q̇d ,qd , t) .

In this way, we can obtain the expressions of the cost index, and we can still solve
the problem for the nonlinear stiffness case, using suitable methods, e.g. numerical
ones. ⇧

3.3 Trajectory optimization problem

With the procedure followed so far, we can replace the optimal values of b (q) in
(38) and hence reformulate the problem in terms of the link trajectories q(t) which
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are now the only optimization variables. In other words, we have now the following
simpler optimization problem:

min
t(t),q

Ji(q, q̇, q̈), i 2 {1,2}

s.t.

8
>>>><

>>>>:

Dynamics equations
q(t) = q(t +T )
x1(q, q̇, q̈) 0
x2(q, q̇, q̈) = 0

(57)

In this paper we do not solve the new problem analytically, except for the One-
DoF case. However, we provide a numerical solution to the trajectory optimization
problem, applying our method to a Single Joint System and Two-Link manipula-
tor.

Notice that the new optimization problem is not written in a conventional form,
e.g. in a general Bolza form, as

min
u(t)

F(x(t f ))+
Z t f

t0
L(x(t),u(t))dt

s.t.

8
>>>><

>>>>:

ẋ = g(x(t),u(t))
x(0) = x0

c1(x) 0
c2(x) = 0

(58)

F(·) and L(·) provide a mathematical representation of the objective function in
terms of the states x(t) and the control input u(t); g(·) is a function of the system
dynamics; x0 denote the initial conditions for the states, and c1, c2 are the nonlinear
constraints that define the task.

For example, let us consider the SEA case using the cost functional J2. Replac-
ing the coefficients FS, j, GS, j, HS, j and the optimal stiffness K̂ j (48), in the cost
functional (47), it yields

J2, j =
G2

S, j

4FS, j
�

G2
S, j

2FS, j
+HS, j

=
(
R T

0 (Jm j q̈d, j + f j)2dt)2

4(
R T

0 (Jm j f̈ j)2dt)
+

2(
R T

0 (Jm j q̈d, j + f j)2dt)
R T

0 (Jm j f̈ j)2dt

+
Z T

0
2Jm j f̈ j(Jm j q̈d, j + f j)dt ,

which is not in the form (58).

The optimization problem written in the Bolza form will be useful to solve the
trajectory optimization problem using GPOPS-II [20]. To translate the problem in
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a conventional form we propose the following steps, providing an example for the
SEA case using the cost index J2.

1. Write the actuated dynamics of the system as in (34), that can be expanded
as

f = M(q)q̈+C(q, q̇)q̇+Kvq̇ (59)

which describes a planar manipulator, where M(q), C(q, q̇), Kv, are in order
the inertia, coriolis and damping matrices; q, q̇, q̈ are the link positions,
velocities and accelerations, respectively.

2. Define the vector of state variables x(t) 2 ¬m, m is the number of state vari-
ables, which for the case of the example are

x(t) = [x1(t) , x2(t) , x3(t) , x4(t) , x5(t) , x6(t)]T ,

x1(t) = q(t) , x2(t) = q̇(t) ,
x3(t) = µ(t) , x4(t) = g(q, q̇,j(q, q̇)) ,
x5(t) = r(q, q̇,j(q, q̇)) ,

x6(t) = K̂ .

Here j(q, q̇) = M�1(q)(C(q, q̇)q̇+Kvq̇) denotes the inverse dynamics of the
system described by (59). g(·), r(·) are functions of this inverse dynamics.
µ(t) =

R T
0 (Jm f̈ )2 is a function that corresponds to the term FS, j, which is

chosen to ease the problem solution; Jm the motor inertia.

3. Write the dynamics in state space as ẋ(t) = g(x(t),u(t)) ,
2

6666664

ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6

3

7777775
=

2

6666664

x2
j(·)

(Jm f̈ )2

2(Jm f̈ )(Jmx3 + f )
(Jmx3 + f )2

0

3

7777775
(60)

where ḟ = d f
dt , and f̈ = d ḟ

dt

4. Write the cost functional (e.g. (47)) in terms of the state variables as

J2, j =� x2
4

4x3
+ x5 (61)

For all cases considered, namely systems actuated by PEAs or by SEAs using
indices J1 or J2, the same procedure can be followed according to the specific case,
i.e. the states might be properly chosen and the formulation needs to be adapted to
the dynamics of the system.
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3.4 Examples of Stiffness and Pre-load optimization

In this section, we apply our methodology to two mechanical systems: a Single
Joint System and a Two-Link Manipulator actuated either by SEA or by PEA. In
both cases we report simulation results and in the first case we also address the
analytical solution of the problem.

3.4.1 Single Joint System

Consider a Single Joint System, actuated by SEA or PEA, which performs a desired
task. The dynamics of this mechanical system is

Mq̈+ cq̇+mgLcosq+K(q�q) = 0

Jmq̈ +K(q �q) = t

(62)

in case of SEA, and

Mq̈+ cq̇+mgLcosq+K(q�qe) = t (63)

in case of PEA, where M = mL2 + I, L is the length of the link, m is the load at the
end of the link, I the inertia of the link and c is the damping. Let us assume that
in both cases, the optimal link trajectory is given as qd(t) = B+Asin(wt), where
the amplitude A, the frequency w , and the angle B around which the link oscillates,
depend on the task.

In the PEAs case, the problem of finding optimal stiffness and pre-load can be
solved analytically. Indeed, substituting qd(t), q̇d(t) and q̈d(t) in (63), we can
obtain t that in turn can be substituted in J1. The minimum of J1 is achieved
with

K̂ = w

2M+
8mgLBJ(2,A)sinB

A2

q̂e = B+
2gmLABJ(1,A)cosB

A2
w

2M+8mgLBJ(2,A)sinB
,

where BJ(n,x) is the Bessel function. Notice that for small amplitudes, i.e. A ! 0,
8BJ(2,A)

A2 ! 1, the optimal stiffness becomes K̂ = w

2M +mgLsinB which corre-
sponds to the resonant condition for the linearized system in q = B.

For the cost functional J2, the minimum is obtained with

K̂ = w

2M+
2mgLBJ(1,A)sinB

A

q̂e = B+
AmgLBJ(0,A)cosB

A2
w

2M+2mgLBJ(1,A)sinB
.

Also in this case, for small amplitudes, the optimal stiffness becomes K̂ = w

2M+
mgLsinB which corresponds to the resonant condition for the linearized system in
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q = B. Of course, for the nonlinear system, the cost function obtained by using the
optimal parameters assumes a bigger value but |t| achieves the minimum value.
This is similar to the resonance concept of linear systems.

Finally, for a given B, the optimal values for K̂ obtained by using J1 and J2 are
quite similar. In particular, if B = 0 and for any amplitude A, K̂ = w

2M, i.e. the
value of stiffness corresponding to the resonant condition for the linearized system
in q = 0.

In the SEAs case, the problem of finding optimal stiffness can be solved analyt-
ically only in case of cost functional J2. Indeed, solving the first equation of
(62) for q and substituting it by its second derivative in the second equation of
(62), we obtain t , and substituting it in J2, with q̇(t) = K�1(Mq̈d(t)+ c q̇d(t)+
mgLcosqd(t))+ qd(t), the minimum can be achieved in closed form, but for the
sake of space, it is not reported here. However, in case of B = 0, c = 0 and for
small amplitudes, the optimal value is

K̂ =
MJmw

2

(M+ Jm)
,

which corresponds to the resonant condition for the linearized system around q= 0,
without losses (c = 0).

In case of J1, the optimal stiffness and the corresponding value of the cost func-
tional can be only obtained numerically. For a comparison between PEA and SEA
in terms of efficiency, and to underline the advantage of soft w.r.t. stiff actuation,
in Fig. 11 we report the cost saving in terms of J1 and J2 in case of PEAs or SEAs
w.r.t. the stiff case. In particular, Fig. 11a and 11b show the energy saving using J1
as measure. On the other hand, Fig. 11c and 11d show the energy saving using J2
as measure.

In particular, considering Fig. 11a and 11c, the use of PEAs allows to get as much
more saving as the amplitude and the frequency of the desired link trajectory de-
crease, independently from the cost functional used, i.e. J1 or J2. However, we
have a consistent saving also in case of large values of frequency, independently
from the amplitude.

Conversely, in case of SEA, savings depend on the cost functional that we consider.
In terms of J1, consistent savings can be obtained increasing the frequency. The
amplitude influences significantly only for small values. In terms of J2, consistent
savings can be obtained for small values of amplitude and large values of frequency
or for large values of amplitude and small values of frequency.

From another point of view, we can conclude that, in terms of J2, PEA is more
convenient for small amplitudes at low frequency or large amplitudes at high fre-
quency, while SEA is more convenient for small amplitudes at high frequency or
for large amplitudes at low frequency. In terms of J1, we can observe differences
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Figure 11: Energy saving (in % w.r.t. the stiff case) for a single joint system,
varying the amplitude A and the frequency w of the desired joint trajectory qd(t) =
Asin(wt)+B, with B = 0.

w.r.t. J2 only in case of SEA. Indeed, SEA becomes convenient only for high fre-
quencies, independently from the amplitude.

3.4.2 Two-Link Manipulator

Consider now a two-link manipulator actuated by SEAs, which is hence an un-
deractuated system (2 motors and 4 DoF). For the given case, assume that q1,d =
A1 sin(wt)+B1 and q2,d = A2 sin(wt)+B2 are the desired link trajectories. The
robot performs a pick and place-like task on a horizontal plane, moving from a
given initial position Q1 to a given final position Q2. The values of amplitudes A1
and A2, as well as of angle B1 and B2 around which each link moves, depend on
Q1 and Q2. Of course, for any couple of points, these parameters are univocally
determined by inverse kinematics.

For this example, we have performed several simulations applying our methodol-
ogy. Some of them are reported in [21], where an analysis of cost functionals J1
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and J2 in case of SEAs, as well as the optimal stiffness K̂ for different values of
frequency w is provided. Moreover, the cost values J1 and J2 for the same tasks
using different springs are also reported. According to simulation results and for
the desired trajectories chosen, the optimization of the stiffness allows to save up
to 62% of energy w.r.t. the rigid case.

One particular case is presented here as a general example of the overall results. For
this case, the desired initial and final positions of the end effector in the task space
are given by the cartesian points Q1 = (�13;5) and Q2 = (14;6) (in centimeters).
The desired link trajectories calculated by inverse kinematics are assumed to be
sinusoidal at a frequency w = 4.5 rad/s and the amplitudes and bias angles are
respectively A1 = 0.45 rad, B1 = 1.5 rad, A2 = 1.5 rad, and B2 = 0.1 rad. Let us
apply the method proposed to determine the optimal stiffness for each joint with
respect to J1. Table 2 shows the simulation results for the trial presented3.

Joint 1 Joint 2 TOTAL
q1 = 0.45cos4.5t +1.5 q2 = 1.5cos4.5t +0.1 J1

K̂ [Nm/rad] 0.2 0.09
J1 0.003 0.07 0.073

K⇤ [Nm/rad] 0.22 0.1
J1 0.003 0.075 0.078

Kmin [Nm/rad] 0.05 0.05
J1 0.04 0.35 0.39

Kmax [Nm/rad] 0.82 0.82
J1 0.07 0.1 0.17

Stiff K ! • K ! •
J1 0.09 0.1 0.19

Table 2: Simulation results for the trial presented. Cost index for different values
of stiffness in a Two-Link robot

In Figs. 12a and 12b we show the simulation results for the two-link manipulator.
The optimal value of stiffness is the one that generates the lowest cost. In this
case, from the simulation we obtain K̂1 = 0.2 Nm/rad and K̂2 = 0.09 Nm/rad. We
observe that for lower values of stiffness the cost reaches a maximum value. This
means that it is not worth to use softer actuators than the optimal. The simula-
tion results presented here will be confronted with the experimental results in next
sections. All the dynamic parameters used for the simulations are obtained from
the model of the experimental two-link manipulator that will be described in the
following.

3K̂ is the optimal stiffness value determined from the simulations. K⇤ is the nearest elastic con-
stant available for the implementation.
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Figure 12: Simulation results for the two-link manipulator actuated by SEAs. En-
ergy Cost J2 for different values of stiffness K1 and K2. Parameters for simulation:
Links Mass m1 = 0.34 Kg, m2 = 0.135 Kg, Links length L1 = L2 = 0.1 m, Motor
inertia Jm1 = Jm2 = 10�5 Kgm2

3.5 Examples of Simultaneous Optimization of Stiffness and Link Tra-
jectories

So far, we have described the analytical method to find the optimal parameters of
a mechanical system actuated either by SEA or by PEA, given any desired trajec-
tory. First, we have used sinusoidal link trajectories to prove that it is possible
to optimize the actuation parameters and re-write the problem in terms of these
trajectories that are now the only optimization variables. The problem in (57), af-
ter applying the methodology proposed, depends only on the trajectories. At this
point, it is still an optimal control problem that can be solved, for instance, using
nonlinear programming methods. Particularly, we use a general purpose optimal
control software (General Pseudospectral Optimization control Software-GPOPS-
II) to find the optimal trajectories.

As defined in [20], the optimization problem that will be solved using GPOPS-II is
stated as detailed in the following.

1. Determine the desired task: for the example, a pick and place-like task to
be executed with a Two-Link planar manipulator. Two points of interest are
required; e.g. the starting (pick) point Qs and the end (place) point Qe of the
end-effector, defined in the cartesian space.

2. Consider that the problem can be written in P phases, where P indicates a
number of events for which one or more conditions may change. For the
example, P = 2; the phases are defined by

• Phase 1: the motions of the system to go from Qs to Qe in a time
interval [0 ,T1].

• Event: In the start and end points, joint velocity is zero.
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• Phase 2: the motions of the system to go from Qe to Qs in a time
interval [T1 ,T2].

3. Write the cost function for each phase in terms of the state variables as in
(61). In this case the cost function does not change for each phase.

4. Define the constraints for the desired task

• Dynamic constraints, defined as ẋ(p) = a(p)[x(p),u(p), t(p)]. For this
problem the dynamics is defined as in (60).

• Event constraints given by bmin  b[x(p),u(p), t(p),s]  bmax. For this
problem, when the event occurs, i.e. the start or end points are achieved
and the velocity of the joints becomes zero, all the states have the same
value, which ensures that the trajectory is continuous.

• Other constraints as inequality path constraints, defined as
cmin  c[x(p),u(p), t(p)] cmax. or integral constraints defined as q(p)

min 
q(p)  q(p)

max. For this example, the minimum and maximum bounds
that the states may achieve considering the physical characteristics of
the system, and the desired initial and end points in the Cartesian space.

Notice that the constraints defined here correspond to the constraints defined
in (57).

The following examples consider the dynamics of a single joint system actuated
either by SEA or PEA and a Two-Link Robot actuated by SEA. The first two cases,
i.e. those for the single joint system, are illustrative and simple, and the results
can be verified analytically. In the last case, we compare the cost when using the
optimized trajectories with the cost when using sinusoidal trajectories as reported
in table 2.

3.5.1 Single Joint System

Consider the Single Joint System, whose dynamics can be written as (62) if actu-
ated by SEA and (63) for the PEA case. The constraints of the link trajectories
are q(0) = q(T ) = 1 rad and q(T/2) = �1 rad and the velocity constraints are
q̇(0) = q̇(T ) = q̇(T/2) = 0 rad/s, with period T = 2p s. We compare the results
obtained from the numerical optimization and the expected results obtained ana-
lytically. The results of the optimal trajectory solution found for the Single Joint
System are shown in Fig. 13a in the case of PEA and in Fig. 13b in the case of
SEA. We observe that in this case the trajectories obtained are sinusoidal as ex-
pected and all the constraints are satisfied. Specifically, for both cases we expected
an amplitude of A = 1 rad for a trajectory defined by qd(t) = Acoswt which can
be verified in the figures presented. Another example carried out using SEA is pre-
sented; for this, consider that the torque is t = 0 Nm, then J1 = 0 and J2 = 0. The
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Figure 13: Optimized trajectory one-DoF Manipulator actuated by PEA or by SEA.
q is the position, dq is the velocity and ddq is the acceleration. For this example
unitary masses and inertia are considered

optimal stiffness according to the analytical calculation is K̂ = 0.5 Nm/rad, while
from the optimization we find that K = 0.53 Nm/rad. Moreover, the performance
index obtained is J2 = 7.9⇥10�8.

In the case of the manipulator actuated by PEA, the analytical value of the perfor-
mance index is J2 = 2.1⇥10�5 with a constant optimal stiffness of K̂ = 1 Nm/rad.
From the optimization we obtain J1 = 2.8⇥10�5 and the stiffness corresponds to
the expected value, i.e. K̂ = 1 Nm/rad. For this case we have that the optimal
pre-load is q̂e = 0 rad.

3.5.2 Two-Link Manipulator

Now, let us analyze an example using a Two-Link Manipulator actuated by SEA,
whose dynamics is given by (27) and (28). We define the desired cartesian points of
start (Qs) and end (Qe) of a pick and place task and calculate the initial conditions
of position and velocity for each joint to reach the desired points. Table 3 shows
the parameters set for the example reported here.

Using the optimization software GPOPS-II, the optimal link trajectories q̂1(t) and
q̂2(t) are obtained, as well as the optimal stiffness K̂1 and K̂2 such that they satisfy
the constraints and minimize the cost functional J2 = J2,1 + J2,2. Figs. 14a and
14b show the resulting optimal trajectories for the desired task. Notice that the
trajectories obtained are periodic, but they are not sinusoidal.

With the optimized trajectories and the optimal stiffness K̂1 = 0.002 Nm/rad and
K̂2 = 0.0001 Nm/rad, the cost is J2 = 3.5⇥ 10�4. Using other trajectories rather
than the optimal ones, e.g. sinusoidal trajectories that satisfy the constraints, we
obtain J2 = 4.3⇥ 10�4 with K̂1 = 0.1 Nm/rad and K̂2 = 0.001 Nm/rad. This
means that the optimization of the trajectories can further reduce the energy con-
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Parameters Value
Qs = (xs,ys) (11.25, 6.9 )
Qe = (xs,ys) (-10.17, 8.42)

Cartesian points in [cm]
T [s] 2p

Initial conditions q1(0) = 1.4 rad, q2(0) =�1.7 rad
Constraints q1(T/2) = 1.6 rad, q2(T/2) = 1.7 rad

(Periodic Motions) q j(0) = q j(T )
q̇ j(0) = q̇ j(T ) = q̇ j(T/2) = 0 rad/s

Table 3: Parameters used for the example presented, emulating a pick and place
task
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Figure 14: Optimized link trajectories for a two-Link SEA Manipulator. q is the
position, dq is the velocity and ddq is the acceleration.

sumption. For this particular case, the reduction is of 20% w.r.t. the case when only
the stiffness is optimized.

3.6 Experimental Results

To show the validity and the applicability of the methodology proposed, we report
the results of experimental tests. First, we present a Single Joint System (hopping
robot) actuated by a SEA. For this example we show that even though the proposed
method is analytical, it is directly applicable to existing systems whose model is not
accurate or not available at all. Moreover, we present the example of a Two-Link
Robot actuated by SEA which performs a pick and place task. We report the results
when using predefined cyclic trajectories, and we also carry out the optimization
of link trajectories.
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Figure 15: Exploded 3D view of the hopping robot. Torque and corresponding
deformation used for stiffness identification are shown.

3.6.1 Model–Free Application: One-DoF hopping robot prototype

We report here an experimental application on a prototype of the hopping robot
represented in Fig. 15. Indeed, the optimization of the actuation parameters re-
quires to evaluate the function fa(z̈, ż,z, q̈, q̇,q, t) in (30) in the case of SEA, or in
(33) in the case of PEA, in terms of the desired link trajectories. However, in an
experimental setup, fa(·) can also be directly measured from the real system by
means of suitable sensors. To carry out the optimization, the derivatives of the
measured signal fa(t) are required. These signals can be obtained by applying esti-
mation techniques, e.g. state reconstructor as in [22]. Hence, through the following
experiment we are able to show that our method can be applied to systems whose
model is unknown.

The following description refers entirely to Fig. 15 which shows that the robot has
one leg composed by two links (1 and 2 in Fig. 15), three DoFs and it is linked to the
frame through two non actuated DoFs (3 and 4 in Fig. 15). All joints are provided
with a contactless magnetic rotary position sensor. The hopper is actuated by a
SEA in the knee, while the other joint is stiff. The series elastic transmission (10
in Fig. 15) between the actuator (11 in Fig. 15) and the knee joint is composed of
two rubber bands. A wheel (7 in Fig. 15) is placed at the extremity of the leg so the
effect of the friction component perpendicular to the direction of motion is reduced.
Vertical hopping is achieved by constraining the leg through a vertical linear guide
(8 in Fig. 15). We acquire the measurements from the encoders and implement
a proportional control scheme to provide the torque inputs to the motors which
depend on the desired trajectories. This controller is fast enough to guarantee that
the joint trajectories are the desired ones, as in the simulations.

The stiffness of the equivalent torsional spring between the knee link and the actu-
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Figure 16: Torque and corresponding deformation used for stiffness identification.

0 2 4 6 8 10
1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5
x 10

4

K [Nm/rad]

J 1
 [

W
2
 s

]

(a) Cost index J1 for different values
stiffness in case of PEAs.

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

200

400

600

800

1000

1200

K [Nm/rad]

J 1
 [

W
2
 s

]

(b) Cost index J1 for different values
stiffness in case of SEAs.

Figure 17: Cost indices J1 for different values of K. In the PEA case, for each
value of stiffness, the corresponding value of the cost functional is computed by
using the best value of q̂e.

ator has been experimentally determined by applying different value of torques and
the corresponding deformations (Fig. 16, Stiffness identification). Once the stiff-
ness value is known (⇠ 0.58 Nm/rad), sinusoidal reference signals that guarantee
a stable hopping have been imposed to the motors (black lines). During the exper-
iment, we measured the hip and knee positions (red and blue lines), and hence the
signal fa(t) in (30), or (33), in the SEA or PEA cases could be obtained straight-
forward. With these results, we verify that it is possible to apply our method to
find the values of cost functionals J1 and J2 for different values of K̂ and the cor-
responding best value of q̂e in PEA case, as reported in Figs. 17 and 18. For both
indices the best result in terms of energy saving can be obtained using SEAs by
setting the stiffness to K ⇡ 0.6 Nm/rad.

39



0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
4

6

8

10

12

14

16

18

20

22

K [Nm/rad]

J 2
 [

(N
m

)2
 s

]

(a) Cost index J2 for different values
stiffness in case of SEAs.

0 2 4 6 8 10
55

60

65

70

75

80

85

K [Nm/rad]

J 2
 [

(N
m

)2
 s

]

(b) Cost index J2 for different values
stiffness in case of PEAs.

Figure 18: Cost indices J2 for different values of K. In the PEA case, for each
value of stiffness, the corresponding value of the cost functional is computed by
using the best value of q̂e.

3.6.2 Two-Link Manipulator

Figure 19: Prototype of the 2 DoF Manipulator actuated by SEA

3.6.3 System Description

The prototype of the manipulator is represented in Fig. 19. It is an underactu-
ated arm with two links (8 in Fig. 19) and two joints (2, 5 in Fig. 19), connected
by a mechanism of pulleys (6 in Fig. 19) and series elastic transmissions (rubber
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bands (9 in Fig. 19)) between the actuators and the joints. Either the joints and
the links are provided with contactless magnetic rotary position sensors AS50454

(3, 7 in Fig. 19). Additionally, hall effect analog current sensors ACS7145 have
been placed in series to each motor in order to measure the current consumption
during the task. An electronic board6 is used to acquire the measurements from the
encoders and the current sensors, and to implement a closed loop position control
scheme to track the desired trajectories. For the reported study, there is no control
loop to track the link trajectories. All the position measurements acquired from the
sensors have been filtered using a butterworth lowpass filter, with cutoff frequency
wc = 15 rad/s to reduce noise effects.

Index calculation
The current measurements I, sampled each 5 ms were used to calculate the torques
as tI = KII, where KI = 18.4 mN/A as specified in the motors specifications 7.
Therefore, the cost indices, J1 = Â j

R t0+T
t0 (t jq̇ j)2dt and J2 = Â j

R t0+T
t0 t

2
j dt can be

calculated. Moreover, as the root mean square value of the current (IRMS) helps to
understand the energy consumption of each joint of the manipulator, we addition-
ally calculate it as

IRMS j =

s
1
T

✓Z t0+T

t0
I2

j (t)dt
◆
, (64)

which as previously mentioned is strictly related to the cost indices used and pro-
vides a measure of the real energy consumption to broaden the analyses presented.
To implement the IRMS function, the current measurements are squared and then fil-
tered using a butterworth lowpass filter with cutoff frequency wc = 2 rad/s.

3.6.4 Test Protocol and Procedure

Applying the methodology proposed, we determine the optimal spring constant for
each joint. To implement the optimal stiffness, we characterize different elastic
elements (series elastic transmissions) using a Materials Testing Machine 8. Thus,
we obtain the curve of the force vs. the displacement F =�kD(x) for each elastic
sample. The elastic elements used are approximately linear, so we can calculate
the elastic constant k (in N/m). Fig. 20a shows the characteristic curve of one of
the elastic rubbers. The length of the rubber band sample in the curve shown is
L = 16 cm. A constant force at a constant speed is applied to elongate it up to 2
cm, and the cycle is repeated several times for each trial. With a linear regression
method we obtain k = 640 N/m. Fig. 20b shows the characteristic curve of the

4http://www.ams.com
5http://www.pololu.com/file/0J196/ACS714-Datasheet.pdf
6http://www.naturalmotioninitiative.com/
7maxon DCX 22S. http://dcx.maxonmotor.com with graphite brushes 24 V, and planetary gear-

head GPX22 with reduction ratio 186 : 1, 5 and 6
8Zwick Roell Z005
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Figure 20: Characteristic curves of force vs. displacement of elastic elements.

softest elastic used. Notice that the curve has a linear region, which is considered
for the analysis; although the rubber bands characteristic is assumed approximately
linear, nonlinearities exist and must be taken into account for experiments.

The pulleys of the platform allow to change the linear elastic constant into the cor-
responding torsional elastic constant: K = kr2 (in Nm/rad), where r is the pulley
radius. For instance, with a pulley of r = 3 cm, the torsional elastic constant for
the sample presented is K = 0.57 Nm/rad. Using different pulley radius and dif-
ferent elastic elements, we can have different spring values as well. Notice that the
torsional constants can be calculated with high accuracy. The error of the fitting
model, as in Figs. 20a or in 20b has been considered in the worst case. The error
in determining the linear constant, i.e. the difference between the model and the
real data is k±62N/m. On the other hand, the radius of the pulleys that have been
printed in a 3D printer9 with an accuracy of r±1 mm. So, the torsional springs can
be determined with an accuracy of K ±6⇥10�5 Nm/rad. However, the available
values depend on the materials and on the pulleys used. Based on these calcula-
tions, for the implementation we consider K̂ ± 10%. The differences between the
costs when using the optimal theoretical and the implemented values of stiffness
do not change significantly in simulation (around 1 % as shown in table 2). For the
experiments carried out, we have used five different rubber bands and pulleys of
two different radius (r = 2 cm and r = 3 cm).
The experiments have been carried out to accomplish a repetitive task, as a pick
and place, where the end effector goes cyclically from one initial position Q1 to a
certain final position Q2, which are defined previously. There are two interesting
cases for this study that will be considered, namely predefined link trajectories to
accomplish the desired task, and optimized link trajectories.

9Stratasys Dimension Elite
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3.6.5 Stiffness optimization of a Two-DoF manipulator with pre-defined tra-
jectory

Consider now the case of stiffness optimization of the Two-link manipulator with
pre-defined trajectory. Assume a simple case of cyclic trajectory, defined for each
link as

q j = A j coswt +B j ,

where the frequency w can be chosen according to the system specifications, and
the amplitude A j and offset angle B j, as well as the input to the motors, i.e. q j,
are properly calculated through inverse kinematics, considering the elastic element
between the actuator and the link.

Recall the simulation results reported in section 3.4, which are used to generate the
experimental trials reported in this section. For the particular case, the desired ini-
tial and end points of the pick and place task, as well as the desired trajectories are
the ones presented in the simulation results in table 2.The use of elastic actuation
was analyzed in 4 cases (considering the physically implementable elastic trans-
missions): first, using the implemented optimal spring values (K⇤

j = K̂ j ±10%)
for each joint K⇤

1 = 0.22 Nm/rad and K⇤
2 = 0.1 Nm/rad, calculated through the

methodology presented; second, with softer springs than the optimal for each joint
K1so f t = 0.08 Nm/rad, K2so f t = 0.06 Nm/rad; third, using an elastic element stiffer
than the optimal one, K1sti f f = 0.57 Nm/rad, K2sti f f = 0.35 Nm/rad, and finally
the rigid case. In all the studied cases, we verify that the desired joint trajectories
(q ) are followed properly. Figs. 21a and 21b show that the measured joint position
green line) tracks the desired joint trajectory given to the motor (represented in
blue) with a mean error of 0.1%. All the calculations have been done considering
the steady state of the system. The analysis of the initial pick consumption and
transient is not in the scope of this work.
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Figure 21: Manipulator Joints trajectory tracking

Furthermore, to ensure that the task performed is the same in all the compared
cases, we verify the behavior of the corresponding link trajectories. Beyond having
similar link angular positions, the comparison is done between the corresponding
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initial and end desired positions of the end effector Q1 and Q2 for each case of
analysis, i.e. the task is accomplished. Table. 4 shows the distance between the
experimental and the desired values of the initial and end positions for the same
desired link trajectories using different stiffness values, namely optimal, softer than
the optimal, stiffer than the optimal, and rigid.

K̂ K < K̂ K > K̂ Rigid
J1TOTAL 0.1542 0.7964 0.3154 0.5672

IRMSTotal (Arms) 1.37 2.95 1.79 1.68
K1 [Nm/rad] 0.2 0.08 0.57 Rigid
K2 [Nm/rad] 0.1 0.06 0.35 Rigid

Distance to Q1 [cm] 2.8 1.9 1.1 0.9
Distance to Q2 [cm] 3.6 1.0 1.1 0.3

Table 4: Results: Index and current consumption for each stiffness case for one
cycle of the pick and place task. Distance from the desired Initial Q1 = (�13,5)
and end Q2 = (14,6) points of the pick and place task for each case of actuation

The trajectory of the end effector during the experiment is shown in Fig. 22. Notice
that the initial and end points are repeatable for each case, even if there are differ-
ences with the desired trajectory. Then, Figs. 23a and 23b show the measured link
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positions q1 and q2 respectively for the four cases of stiffness analyzed. Observe
that the softest elastic, particularly in Link 2 produces higher angular position er-
rors and a delay. Notice that in Fig. 20b, the characteristic curve of the softest
elastic used is linear only in a region and it has been considered linear for this ex-
periment. The angular positions of Link 2 in the other cases (optimal spring, stiffer
spring and rigid actuation) behave as expected. Instead, there are bigger differences
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Figure 23: Compared link positions for the same desired task

in the position of Link 1 with respect to the desired behavior. The differences in the
measured link positions are mainly due to nonlinearities, non-modeled dynamics
and uncertainties in the model.

The IRMS value of each joint provides additional information to analyze the energy
consumption and it is strictly related to the cost indices. We have observed that with
the optimal joint stiffness the IRMS is always lower than for the rest of the cases,
proving that lower energy consumptions can be obtained with the optimization
of actuation parameters. Moreover, the stiff transmission is not always the worst
case in terms of energy consumption, taking into account the IRMS. For example,
Figs.24a and 24b, show that with the optimal joint stiffness, the current requirement
accumulated for each joint during the task is lower than for the rest of the actuation
cases, while the softer case is the most expensive one. Table 4 summarizes the cost
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Figure 24: Manipulator IRMS

results for the presented case, where the savings when using the optimal springs,
in terms of J1 are at least 58% w.r.t. a stiffer case and 79% w.r.t. the rigid case.
The values in Table 4 are calculated from the measurements, notice that the trend
is the same as expected from the simulations. As the data depend on the sensors,
the accuracy of the index depends directly on the sensors accuracy, which for the
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encoders is q ±0.002 rad, and for the current sensors is I ± 1 mA. In terms of the
cost, the calculation is again highly accurate, i.e. J1 ±2⇥10�6.

In general, a significant energy saving is achieved when optimizing the actuation
parameters. In the following, We present some consolidated results from a set
of experiments. We carried out 320 trials of the same task using different elastic
transmissions and different trajectories at different frequencies as summarized in
Table 5. Fig. 25 shows the costs of this repetitive task when using the optimal
stiffness rather that softer, stiffer or rigid actuation. We chose different desired
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Figure 25: Performance of optimal actuation

trajectories at different frequencies from the 320 trials performed, as summarized
in Table 5. In each case, the cost of the task is calculated when the system has
reached the steady state. For the analysis, the cost J is normalized in every case
with respect to the cost of when using the optimal actuation parameters, such that
for the latter, the normalized cost is Jn = 1. Furthermore, notice that for all the other
cases of stiffness, the cost is always higher than when optimizing the stiffness.
Depending on the frequency and on the amplitude of the desired trajectories, the
optimized stiffness allows energy savings up to 79%.

3.6.6 Simultaneous optimization of joint trajectories and stiffness of a Two-
link manipulator with SEAs

Herein we present the case of simultaneous optimization of joint trajectories and
stiffness of a Two-link manipulator with SEAs. In this part, the results reported
correspond to of a set of experiments carried out to test the optimal trajectories and
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Case q1 [rad] q2[rad]
1 A1 = 0.31 A2 = 1.7

B1 = 1 B2 = 0.04
w1 = 1rad/s w2 = 1rad/s

2 A1 = 0.1 A2 = 1.6
B1 = 1.5 B2 = 0.01

w1 = 2rad/s w2 = 2rad/s
3 A1 = 0.5 A2 = 1.6

B1 = 1 B2 = 0.03
w1 = 3.5rad/s w2 = 3.5rad/s

4 A1 = 0.05 A2 = 1.5
B1 = 1.6 B2 = 0

w1 = 4rad/s w2 = 4rad/s
5 A1 = 0.25 A2 = 1.7

B1 = 1.5 B2 = 0.1
w1 = 4.5rad/s w2 = 4.5rad/s

Table 5: Different cases of link trajectories q1 and q2 used to report Fig. 25.

stiffness found by solving the problem with GPOPS-II as described in section 3.5.
In order to compare the results with the previous case of predefined trajectories,
the conditions of the experiments are the same; the initial and end points (Q1; Q2)
of the task are the ones chosen before. The desired states of the links are shown in
Figs. 27a and 27b. The optimal joint stiffness for this example is K̂1 = 0.12Nm/rad
and K̂2 = 0.05Nm/rad. Recall results on Table 4. Now, Table. 6 shows the distance
between the experimental and the desired values of the initial and end positions
when using the optimal stiffness and optimal joint trajectories. On the other hand,
regarding the cost index, observe that the mean square value of the current spent is
IRMSTotal = 1.09 Arms and the index J1 = 0.12 which is approximately a 20% lower
consumption than the optimal case when using a pre-defined sinusoidal trajectory,
under the same conditions.

with q̂ j and K̂
J2TOTAL 0.0004

IRMSTotal (Arms) 1.09
K1 [Nm/rad] 0.12
K2 [Nm/rad] 0.05

Distance to Q1 [cm] 1.02
Distance to Q2 [cm] 1.8

Table 6: Results: Index and current consumption for one cycle of the pick and
place task.
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Moreover, the trajectory of the end effector during the experiment is shown in
Fig. 26. Observe that the desired initial and end points are reachable and the task
is repeatable.
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Figure 26: End effector behavior
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Figure 27: Optimization of trajectories: Desired States for manipulator’s Links

Figs. 28a and 28b we show that the joint tracks the angular position and achieves
a steady state. Figs. 29a and 29b show the measured link positions q1 and q2
respectively compared to the desired trajectories given by the optimization process
in GPOPS-II. Due to the nonlinear behavior of the elastic elements, particularly
the one of Link 1, the angular position presents a periodic error. However, the
behavior of the system in terms of the initial and end points of the end-effector is
not affected, achieving the task.

3.7 Conclusions

Energy efficiency is an important issue in robotics autonomous systems. In this
paper, we have presented a methodology to analyze the role of soft actuators in the
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Figure 28: Joints angular positions measured vs. desired
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Figure 29: Links angular positions measured vs. desired

reduction of energy consumption of mechanical systems. As a consequence, we
propose an analytical solution to find the optimal actuation parameters of n-DoF
mechanical systems actuated by SEA or by PEA. The trajectories to accomplish a
task play also an important role in the performance of mechanical systems. How-
ever, the actuation parameters and the trajectories are highly coupled. To solve this
problem, we have the optimization problem in a simpler one that regards only the
link trajectories.

Several simulations and some experimental tests were carried out to show the va-
lidity of the proposed methodology. A complete analysis that compares the energy
cost of robotic systems that perform required tasks as a pick and place task or
locomotion has been carried out. The strength point of our work is the fact of de-
coupling the complex problem of concurrently optimizing the actuation parameters
and the actuation parameters, providing an analytical solution to the optimization
problem. We are also able to show that using the optimal actuation parameters the
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savings obtained go up to 62% and further savings of at least 20% are obtained
when optimizing simultaneously the actuation parameters and the link trajecto-
ries.

50



4 Anticipaotory Control for Soft Robots

There are two main factors that enable humans to perform a wide variety of tasks
in the real world: the musculoskeletal system and the Nervous System (NS). On
the artificial side, while Soft Robots have been designed to reproduce some of the
key features of the musculoskeletal system, from the control point of view, cur-
rent approaches are still far from achieving performances comparable with those
obtained by the NS. In this work, we present a novel control algorithm based on
iterative control, which exhibits a typical human feature: learning an anticipatory
action. The algorithm provides a plug-and-play control technique for Soft Robots
that preserves their dynamic behavior. At the same time, it can be successfully
applied to serial and parallel structures, while being robust against model uncer-
tainties as well as different external force vector fields. Experiments show the
effectiveness of the here proposed techniques.

4.1 Soft Robots & Anticipatory Behavior

In this section we introduce the model of Soft Robots and the concept of antici-
patory behavior, i.e. a way to control such systems maintaining their mechanical
characteristics.

Here we make the assumptions that the motor dynamics is negligible, and that the
spring characteristic depends on the deflection, i.e. the difference between actual
and reference position, and on an additional parameter useful e.g. to adjust the
joint stiffness. The resulting model for a N-dof robot is:

Figure 30: A control algorithm for Soft Robots: taking inspiration from how the
NS deals with muscoloskeletal system.
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M(q)q̈+C(q, q̇)q̇+G(q)+T (q� r,d) = 0 (65)

where q 2 RN , q̇ 2 RN , q̈ 2 RN are the vectors of generalized joint positions,
velocities and accelerations respectively, M(q) 2 RNxN is the inertia matrix and
C(q, q̇) 2 RNxN is the centrifugal and Coriolis matrix, G(q) 2 RN is the potential
vector field, and T (q�r,d)2RN is the vector field representing the elastic torques.
The control input is r 2 RN , i.e. the reference position, and the stiffness input vec-
tor is d 2 RN . T (q� r,d) depends on the physical implementation of the elastic
transmission. Joint stiffness is defined as the derivative of actuation torque w.r.t.
the Lagrangian variables ∂T

∂q . For the sake of clarity, we will omit the input d when
not strictly necessary, and use the notation T (q� r), meaning that the conditions
stated have to be valid for every d.

In the majority of cases compliant elements are deliberately introduced in Soft
Robot design to confer to the system additional characteristics like robustness, en-
ergy efficiency, and adaptability to cite a few. Hence control algorithms that pre-
serve the mechanism stiffness are preferable w.r.t. approaches that deeply change
the behavior of the system.

We can formalize this idea requiring the stiffness in closed loop to be in a neigh-
borhood of radius d of the open loop stiffness along the system trajectory (q = r),
i.e.: ���

���
∂T (q� r)

∂q

���
q⌘r

� ∂T (q�y(q))
∂q

���
q⌘q̄

���
���< d q̄|y(q̄) = q̄ (66)

where the term on the left is the Euclidean matrix norm. Defining DTi(·), ∂ti
∂qi

(·),
and using the equation in appendix A (for the sake of simplicity we hypothesize
here the diagonal dominance) we obtain:

2
���
���DTi(0)

∂yi(q)
∂qi

|q⌘q̄

���
���< d (67)

Which means that, to preserve the mechanical stiffness characteristic, the propor-
tional component of the feedback has to be sufficiently small, i.e.:

���
���
∂yi(q)

∂qi
|q⌘q̄

���
���<

d

2||DTi(0)||
(68)

On the other hand, feedforward action does not affect this condition, since it does
not depend on q.

In human motor control, the term anticipatory behavior [23] refers to the prefer-
ence to work mostly on feedforward (which can be learned through the repetitions
of the same task [24]). In the robotic context this concept translates in reducing the
proportional feedback control component.
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Figure 31: Schematic representation of the control architecture, with major quan-
tities underlined. [q, q̇] are the Lagrangian variables, and qd , q̇d , q̈d their desired
evolutions. [e, ė] is the tracking error. M, C and G are the inertia, centrifugal and
potential field terms, T is the spring torques vector, d and r are the stiffness and ref-
erence inputs. r f b is the feedback action, and r f f is the feedforward action, which
is the sum of a term precomputed and a term estimated.

4.2 Control Architecture

The scheme represented in Fig. 31 shows the overall control algorithm that com-
bines a TVLQR feedback action and a feedforward component relying on a partial
knowledge of the model and on an iterative updating law. Within the Control The-
ory, the ILC [25] provides a suitable framework to synthesize controllers in which
a pure feedback loop and an iterative feedback loop concur to determine the input
evolution. A generic ILC control law is:

rk+1(t) = rk(t)+ c(ek,ek+1, t) (69)

where k is the iteration index, rk(t) 2 RN is the input vector at k-th iteration, ek 2
RN is the error vector at k-th iteration and c(ek,ek+1, t) is the updating law.

A general updating law is expressed by the sum of two terms

c(ek,ek+1, t) = ILCo f f (t,ek)+ ILCon(t,ek+1) , (70)

where, in a full state proportional ILC, it is:
8
>><

>>:

ILCo f f (t,k) =Ko f f (t)


qd(t)�qk(t)
q̇d(t)� q̇k(t)

�

ILCon(t,k+1) =Kon(t)


qd(t)�qk+1(t)
q̇d(t)� q̇k+1(t)

� , (71)

where Ko f f (t) 2 RNx2N and Kon(t) 2 RNx2N are the control gain matrices.
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4.3 Decentralized Approach

In order to develop a control system as general as possible we adopt a decentralized
approach (as seen e.g. in [26]). To this aim it is convenient to express the Soft
Robot model 65 in a decoupled way:

ẋ(t) = Fx(t)+Gti(qi(t),ri(t))+D(t) , (72)

where x(t) =
⇥
qi q̇i

⇤T is the state vector, ti is the i-th element of T , ri(t) is the i-th
element of r(t), while F , G and D have the form:

F =

2

4
0 1

0
�bi

Ii

3

5 , G =

2

4
0
1
Ii

3

5 , D =


0

Di +hi(t)

�
. (73)

Where Ii and bi are, respectively, the inertia and the damping seen from the i-th
joint, D is the vector of disturbs, modelled as the sum of a constant external force
Di and a time variant action hi(t) such that hi(0) = 0, which contains also the
neglected coupling actions (for further details refer to [26] Section 8.3).

In order to implement a decentralized controller, the control gains assume the fol-
lowing form:

Ko f f (t) =
⇥
diag(Kpo f f ,i) |diag(Kdo f f ,i)

⇤
(74)

Kon(t) =
⇥
diag(Kpon,i) |diag(Kdon,i)

⇤
, (75)

where Kpo f f ,i 2 R and Kdo f f ,i 2 R are the iterative control gains proportional to
the position and velocity error of the i-th, respectively; and Kpon,i 2 R and Kdon,i 2
R are the feedback control gains proportional to the position and velocity error,
respectively. It is useful to define the vectors Ko f f ,i = [Kpo f f ,i Kdo f f ,i] and Kon,i =
[Kpon,i Kdon,i].

Both a feedback control and a nominal feedforward action can be designed based
on the model reported in (72). In addition the ILC will provide the suitable action
for compensating hi(t) as reported in section 4.6.

Constant disturbances Di can be compensated by either ILC or by a proper constant
input action obtained before starting the learning phase.

4.4 Linearization

Given a reference trajectory xd(t) =
⇥
qdi(t) q̇di(t)

⇤T , a nominal control action r0
i

is derived by numerically solving 0 = Fxd(t)+Gti(qdi(t),r
0
i (t))+

⇥
0 Di

⇤T . It is
now possible to linearize the known dynamics of the system (72) (i.e. ti(qi,ri))
around the desired trajectory (xd(t),r0

i (t)), obtaining:

ẋ(t) = A(t)x(t)+B(t)ri(t)+W (t). (76)
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where

A(t) =

2

4
0 1

1
Ii

∂ti
∂qi

(t)
�bi

Ii

3

5 , B(t) =

2

4
0

1
Ii

∂ti
∂ ri

(t)

3

5 , W (t) =


0
hi(t)

�
. (77)

4.5 Stability Analysis

The feedback action can be designed by the solution of the time varying linear
quadratic optimization problem (see [27] Chapter 5):

J =
1
2

Z t f in

0
(xT Q(t)x+ rT

i R(t)ri)dt, (78)

where Q(t) 2 R2x2 is a positive semidefinite matrix and R(t) 2 R+. The i-th feed-
back gain vector is given by:

Kon,i(t) = R(t)�1B(t)T S(t), (79)

where S(t) comes from the solution of the time-varying differential matrix Riccati
equation:

Ṡ(t) =�S(t)A(t)�A(t)T S(t)+S(t)B(t)R(t)�1B(t)T S(t)�Q(t) , (80)

with the boundary constraint S(t f in) = /0.

4.6 ILC Convergence Analysis

An ILC convergence condition for a class of dynamic systems including (76), given
in [28], results:

r([I +Kon,i(t)B(t)]�1[I �Ko f f ,i(t)B(t)])< 1. 8t 2 [0, t f in] , (81)

where r(·) represents the spectral radius.

Note that the (81) does not depend on Ax(t) neither on hi(t), hence the proposed
ILC updating law allows to compensate for the effects given by the not modeled
dynamics.

Since the argument of the spectral radius in (81) is a scalar, r(·) is coincident
with the absolute value. Hence by substituting the (79) in the (81) we obtain the
following condition

���
1�Ko f f ,i(t)B(t)

1+R(t)�1B(t)T S(t)B(t)

���< 1 , (82)
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to be fulfilled. By rewriting:

Ko f f ,i(t) = (1+ai(t))B(t)† +Gi(t), (83)

where B(t)† represents the Moore-Penrose pseudoinverse of the matrix B(t), with
ai(t) 2 R and Gi(t) 2 ker{B(t)} two functions to be chosen, we obtain the follow-
ing convergence condition:

|ai(t)|< |1+R(t)�1B(t)T S(t)B(t)| 8t 2 [0, t f in] . (84)

A possible choice is:

ai(t) = e (1+R(t)�1B(t)T S(t)B(t)) , (85)

where e 2 [0 ,1) is a parameter to be chosen considering the trade off between fast
convergence and control cost. We heuristically found that for our experimental
setup a good choice is e = 0.9. Since Gi(t) 2 ker{B(t)}, from the (77) it follows
that Gi(t) = [Kpo f f ,i 0]. Theoretically any choice of Kpo f f ,i would work, practi-
cally we achieved good performance by setting its value such that the following
condition holds:

Kpo f f ,i(t) =
R t f in

0 Kpon,i(t)
R t f in

0 Kdon,i(t)
Kdo f f ,i(t) (86)

Finally, it is worth to notice that two quantities remain to be tuned: Q(t) and R(t).
In the experimental tests we describe in the following section we chose Q(t) =
diag([1, 0]) because the accuracy of the position measurements was much higher
than the velocity ones. R(t) has been left as a free parameter for the user to tune
the controller authority.

4.7 Experimental Results

This section presents some application examples (hereinafter referred to as Experi-
ment 1, Experiment 2, Experiment 3, and Experiment 4) of the proposed algorithm
with various robot architectures: serial and parallel structures with a different num-
ber of dofs and configurations (for further details see the attached videos). The
experiments were performed using the qbmove maker pro [29] (hereinafter simply
referred to as qbmoves) actuators as testbed. These are modular variable stiffness
servos based on an agonist-antagonist mechanism. For this actuator, the model of
ti in (72) is:

ti = 2k cosh(adi)sinh(a(qi � ri))+m(qi � ri) (87)

where ti, di, ri and qi are respectively the i-th component of T , d, r and q defined
above, while a= 6.7328 [1/rad], k = 0.0222 [Nm] and m= 0.5 [Nm/rad] are model
parameters.
These experiments aim to show:
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(a) 1-dof config. (b) 2-dof config. (c) 3-dof config.
(d) 2-dof horizontal
config.

Figure 32: Experimental setups and reference frames. 1-dof configuration (Experi-
ment 1, and 2; 4.7.1, 4.7.2) (32a). 2-dof configuration (Experiment 1; 4.7.1) (32b).
3-dof configuration (Experiment 1; 4.7.1) (32c): a parallel spring is included in this
setup to avoid that the torque required to the base actuator exceeds its torque limit.
Notice that for the success of the experiment the knowledge of the exact elastic
constant of the spring is not required. 2-dof horizontal configuration (Experiment
3; 4.7.3) (32d).

• the scalability of the method (Experiment 1, and 4);

• its ability to work with variable stiffness and in presence of uncertainties
(e.g. a sign change of the gravity torque) (Experiment 1, 2, and 4);

• the plug & play behavior of the method, its high generality, and its model in-
dependence (no knowledge about the overall system dynamic and kinematic
is required) (Experiment 1, and 4);

• the ability of a mostly feedforward control not to alter the stiffness charac-
teristic of the system (Experiment 3).

Notice that the latter requirement is important to fully take advantage of the me-
chanical design of soft robotic systems that are able to mechanically vary their
impedance, thus exhibiting a human muscle-like behavior.
Moreover, in order to remain as independent as possible from a given system ar-
chitecture, the quantities bi and Ii were estimated trough step response in the first
phase of each experiment.

4.7.1 Experiment 1

Experimental Setup: In this experiment we considered three different setups, which
consisted of serial chains of one, two and three qbmoves as shown in Fig. 32. We
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Figure 33: Stiffness input (di) evolution over time for the three different setups.
Evolution ’a’ is the one of the first qbmove for 1-dof case (see Fig. 32a), of the
second qbmove for 2-dof case (see Fig. 32b) and for the third qbmove for 3-dof
case (see Fig. 32c). Evolution ’b’ is the one of the first qbmove for the 2-dof case
and for the second qbmove for 3-dof case. Evolution ’c’ is the one of the first
qbmove for the 3-dof case.

chose:
q1(t) =� p

12
cos(2t), t 2 [0,20] (88)

as the desired trajectory for the first joint. The others joints follow a trajectory that
is in phase opposition w.r.t. the one followed by the previous joint in the chain.
The experiments were conducted with a time-varying stiffness different for each
qbmove; Fig. 33 shows the stiffness input di for each joint for the three setups. The
value for R(t) was chosen to be constant and equals to 3. Such value was heuris-
tically identified as a trade off between the ILC converge velocity and the control
cost.
Results: Fig. 34a shows the evolution of the error integral over the iterations nor-
malized by the terminal time (in this case t f in = 20 s) and the number of joints
for the three setups. For each system configuration the error reduction is greater
than 60% w.r.t. the starting error. Fig. 34b shows that, iteration after iteration,
the feedforward component becomes larger and larger w.r.t. the feedback compo-
nent.

The minimum error can be observed for the 3-dof case. This is due to the fact that
stiffness increases with the deflection, which depends on the wrench. At higher
deflection, static friction and hysteresis become negligible and the spring model is
more accurate.

4.7.2 Experiment 2

Experimental Setup: As reported in 4.2, we decomposed the uncertainties in hi(t)
and Di but we pre-evaluate only the Di component. Due this fact, a major change
in hi(t) (e.g. a change in sign of the gravity torque) is particularly challenging
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(a) Evolution of the error integral over the
iterations normalized by the the terminal
time and the number of joints for the three
setups.
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Figure 34: Effect of the ILC algorithm on the error integral 34a and anticipatory
action 34b.
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Figure 35: Trajectory evolution over the iterations for the experiment with low
stiffness.

for the proposed method. This experiment aims to test the effectiveness of the
ILC algorithm also in this limit condition. To do this, we imposed that the robot,
depicted in Fig. 32a and already used in Experiment 1, must follow the following
trajectory:

q1(t) =�p

4
cos(

4p

30
t)+

p

4
, t 2 [0,30] (89)

around the dashed line depicted in Fig. 32a. In this experiment we used R(t) con-
stant and equals to 1.
Results: Fig. 36 represents the reduction of the error integral normalized by the ter-
minal time over the iterations with low, medium and high constant stiffness. Fig.
35 shows the time evolution of the link trajectory in four meaningful iterations for
the low stiffness case, which exhibits the largest initial error. Results shown that in
150 iterations the desired trajectory is tracked with an error reduction about 95%
w.r.t. the initial error for the low stiffness case.
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Figure 36: Evolution of the error integral over the iterations normalized by the
terminal time for three different constant input stiffness values: di = 0, di = 0.17,
di = 0.44 [rad], for the low, medium, and high stiffness case respectively.

4.7.3 Experiment 3

Experimental Setup: In this experiment we used the setup depicted in Fig. 32d.
We ran the ILC algorithm to teach the robot to follow the desired trajectory on
the horizontal plane both with low and high constant stiffness. Then, we placed a
brass bar next to the robot in such a way that the impact was unavoidable. In this
experiment we used R(t) constant and equals to 2.
Results: As shown in Fig. 37 when the stiffness was low the robot could not move
the bar. On the contrary when the stiffness was high the robot dropped the bar
and continued following the trajectory. Fig. 38 shows the trajectory followed in
both the experiments: at 0.94 s (magenta dashed vertical line) the robot impacts
the bar. In the low stiffness case (Fig. 38a) the robot softly adapts to the external
environment while in the high stiffness case (Fig. 38b) the robot at 1.3 s (orange
dashed vertical line) drops the bar and converges to the desired trajectory in about
3 s (for the sake of readability we report the time evolution till 2 s).

4.7.4 Experiment 4

Experimental Setup: In this experiment we use a 3-dof Delta robot (see Fig. 39)
composed of three joints connected to the end-effector through a parallel structure
[30].

First of all, manually moving the end-effector, we taught to the robot the desired
trajectory: a rest-to-rest task trough two obstacles (Obstacle 1, Obstacle 2), each
consisting of two aluminum columns (Fig. 39). We taught the robot to pass trough
Obstacle 1 and to jump over Obstacle 2. The input stiffness profile is time varying:
the robot is stiff during the positioning over the target (points Target 1 and Target 2
marked as red dots) so that the precision is improved, and soft during the obstacles
passing phases to be adaptable to the external environment. In this experiment we
used R(t) constant and equals to 3.
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(a) Free t = 0s (b) Free t = 1s (c) Free t = 2s

(d) Soft t = 0s (e) Soft t = 1s (f) Soft t = 2s

(g) Stiff t = 0s (h) Stiff t = 1s (i) Stiff t = 2s

Figure 37: Robot positions at t = 0, 1 and 2 s for different stiffness input values.
(a-c): Robot positions with no obstacle. (d-f): Robot positions with obstacle and
low stiffness; the robot adapts to the external environment. (g-i): Robot positions
with obstacle and high stiffness; the robot drops the bar.
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(a) Low stiffness input di = 0 rad
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(b) High stiffness input di = 0.52 rad

Figure 38: Trajectory followed by a 2-dof horizontal robot in presence of an obsta-
cle. The impact occurs at 0.94 s. Low stiffness configuration 38a: the robot adapts
to the external environment. High stiffness configuration 38b: the robot drops the
bar at 1.3 s and continues to follow the desired trajectory.
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Figure 39: Delta robot used for the rest-to-rest experiment from T1 (Target 1) to
T2 (Target 2). The red dots represent the target spots while the aluminum columns
represent the obstacles (O1 Obstacles 1, O2 Obstacles 2). The robot has to move its
end-effector between the columns of the Obstacle 1 and has to jump over Obstacle
2. Q1, Q2 and Q3 are the three actuators.

Result: Fig. 41 shows the trajectory following improvement between the first and
the last iteration. Initially the robot could neither pass through the columns nor
jump over the barricade failing to fulfill the task. At the end of the learning process
the robot was able to successfully accomplish the task. Fig. 40 shows the error
evolution over iterations. We can note that at 87-th iteration the error drops signif-
icantly. This is due to the fact that the robot learns how to pass through the second
obstacle, improving the trajectory tracking.

4.8 Conclusions and Future Works

Some of the features of human motor control could be the key to advance the
control state of the art in soft robotics. In this work, we presente an algorithm
that combines a feedback component (TVLQR) and a feedforward action, through
ILC, showing a human-like behavior: the learning of an anticipatory action, i.e. the
growing authority of the feedforward action w.r.t. the feedback one, via task rep-
etition. The here proposed control has been successfully applied to a soft robotic
system that exhibits characteristics similar to the human musculoskeletal appara-
tus, in various configurations, degrees of freedom and tasks. Results show the
effectiveness of the here proposed techniques in dealing with different kinematic
structures, working conditions and external force fields. At the same time, the
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Figure 40: Evolution of the error integral over the iterations normalized by the the
terminal time for the three joints of the Delta robot. At iteration 87 and 106 there
are two drops of the error since the robot learned how to pass the Obstacle 2 and
Obstacle 1, respectively. Not that the drop at 87th iteration is much higher than the
drop at iteration 106.

(a) 1st iter-
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(b) 1st iter-
ation: first
obstacle
passing.

(c) 1st iter-
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(d) 1st iter-
ation: jump
phase.

(e) 1st iter-
ation: place
phase.

(f) 1st itera-
tion: return-
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iteration:
starting
point.
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Figure 41: First and last iteration photo sequence of the Delta experiment. (a, g):
The robot should stand over the red dot (Target 1). (b, h): The robot has to pass
through the two columns of Obstacle 1. In the first iteration it can not do it and it
collides with one of the columns. (c, i): The robot prepares itself to jump over the
second obstacle. (d, j): the robot has to jump over the obstacle. In the first iteration
it jumps too early and fails. (e, k): The robot should position itself over the second
target. In the first iteration, since it failed the jump, the robot stops against the
obstacle. (f, l): The robot returns to the starting position.
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methods described in this paper have been proven to be able to fully take advan-
tage of the soft/stiff mechanical behavior of soft robots for task accomplishment.
Given its plug & play and device independent behavior, the control paradigm can
be easily extended to different robotic architectures. Future works will focus on
further investigating these techniques, to approach problems both in motor control,
with humans, and motion control, with robots.

APPENDIX A

In this section we report the demonstration of the inequality:

|ai,i|<
d

2
8i 2 {1 . . .n}) ||A||2  d (90)

Where A 2 Rn⇥n is a matrix with diagonal dominance and ai, j is its element {i, j}.
Considering the 2�norm of A we have that:

||A||2 = max
i

|li| (91)

Where li are the eigenvalues of A. For the Gerschgorin Theorem we have that, if a
system has diagonal dominance:

max
i
{|li|} max

i
{|ai,i|+Â

i 6= j
|ai, j|} max

i
{2|ai,i|} (92)

Hence, considering that from the hypothesis derives directly that maxi{2|ai,i|}< d ,
from (91) and (92) the (90) is obtained.

The thesis can also be proved for many matrix norms, considering the existing ma-
trix norms inequalities (e.g. ||A||1 <

p
n||A||2, ||A||• <

p
n||A||2, ||A||F <Rank(A) ||A||2)
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