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Executive Summary

This third deliverable of work package WP3 presents a summary of the most recent research results on safe
control of redundant robots obtained by the partners of SAPHARI and developed during the first three years
of the project. The presence of robot redundancy with respect to common tasks has been explored in two
different ways: i) during free motion, for controlling the robot so as to avoid dynamic obstacles (including
humans); ii) during physical contact, for improving the interaction modality in which safe and accurate control
of human-robot exchanged forces is achieved.

The results briefly described in this document are in part individual evolutions of the methods already
reported in milestone MS11 “Safe kinematic control laws for redundant robots” reached @M18, and in part
they represent the integration of those methods. Activities within the specific task T3.3 of WP3 will continue
as planned in the last year of the project, since free motion control results in the presence of humans are now
mature for being directly applied to the use cases of WP8. On the other hand, the interaction control methods
summarized here will be further developed, integrated, tested, and refined in task T3.4 (the next deliverable
D3.4.1 “Intentional human-interaction control of compliant robots” is due @M42).
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1 Introduction

When a robot is employed near humans, the robot must be controlled so as to ensure a desired free motion, but
also to physically interact in a safe way with the humans. Undesired collisions should be avoided, unexpected
impacts safely handled, and intentional exchange of forces suitably controlled.

Indeed, the safest possible solution is avoiding any undesired contact with humans or environment obsta-
cles. For kinematically redundant manipulators with fixed or mobile base in a shared human-robot workspace,
suitable control algorithms allow avoiding collisions with humans or other obstacles, while still performing a
task defined in the Cartesian space. At Fraunhofer |I0SB, a Nonlinear Model Predictive Control (NMPC) ap-
proach has been developed (Sec. to move the end-effector of the robot along a geometric reference path or
trajectory to a desired pose (3D position and orientation), while considering obstacles. Due to the underlying
general robot model considered, the control algorithm can be applied to both fixed and mobile manipulators,
which is illustrated by means of simulations of a 7-DOF fixed manipulator and of a 10-DOF mobile manipulator.

UNIROMA1 has proposed a method that takes into account obstacles by using unilateral constraints within
a multi-task redundancy resolution framework (Sec. Eb The introduction of unilateral constraints in the so-
called Reverse Priority (RP) redundancy resolution method [15] was presented in [21]. The key feature of the
RP method is that contributions of higher priority tasks are added after having computed the solutions for
lower priority tasks. This allows checking more efficiently whether one or more unilateral constraints (which
have typically the highest priority in the stack of tasks) need to be activated, or if the current solution computed
so far is already within these hard inequality constraints. More in general, the method allows to insert tasks
associated to unilateral constraints at any priority level, and guarantees the continuity of the joint velocity
command during constraint activation/deactivation. To this end, a method that minimizes the variation of the
joint velocity commands [16] is used.

The redundancy of a robot in task execution can also be exploited to ensure a compliant behaviour to the
robot’s body in the presence of physical interaction, so that the assigned interaction task is completed only
if safety is ensured. To this aim, two different approaches have been pursued by UNINA. The first approach,
presented in Sec. , does not use any kind of exteroceptive sensing. It guarantees the correct execution of
the main task, while compliance of the robot’s body during intentional or accidental interaction is introduced
in the null space of the main task. The second approach, presented in Sec. @ makes use of a new prototype
of the flexible artificial skin developed within SAPHARI by the Second University of Naples (SUN). The skin is
able to measure both the position of the contact point and the three components of an applied force. The
application presented here deals with the control of human-robot interaction through multiple contacts.

UNIROMA1 has developed in parallel a method for estimating interaction forces (in direction and intensity)
during dynamic contacts between a robot and a human, with no explicit force/torque sensing [11]. The method
is based on the integrated use of model-based residual signals, see eq. , that detect the occurrence of a
collision [20] with one or more external RGB-D sensors (e.g., Kinects) that approximately localize the contact
point on the surface of the robot links. In Sec.|7| we illustrate further the use of the estimated contact forces
for the design of two human-robot interaction controllers, which extend respectively the impedance control
method [13] and the direct force control method [14] to the case of a generic contact location on the robot.
For this reason, we denote this approach as generalized contact motion and force control.

2 Background

In general, a manipulator with fixed or mobile base can be modeled as a chain of rigid links connected by n
revolute or prismatic joints. When the commands are set at the velocity level, the following kinematic model
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can be used

qg=v (1)
r = f(Q)> (2)

with the revolute or prismatic joint variables g € R"™, the joint velocities v € R"” and the end-effector pose
€ R™. The nonlinear function f(q) maps the joint configuration g into the Cartesian space R™ and is called
the direct kinematics of the robot.

The direct kinematics f(q) is derived from the Denavit-Hartenberg convention. This procedure, originally
developed for robot manipulators with fixed base, is simply extensible to mobile manipulators by adding two
prismatic joints for the translational motion of the platform base and one revolute joint for the platform ro-
tation. This is sufficient for holonomic (omnidirectional) platforms. In the case of a non-holonomic platform,
the non-holonomic properties are described by additional constraints. Hence, a generic modeling framework
is available that can be applied to both fixed manipulators and mobile manipulators.

At a given robot configuration q, differential kinematics of the task is

T =Jq. (3)
Inversion of the differential map (3)) provides infinitely many solutions, all of which can be generated as
q=J" + Pqy, (4)
where J* is the (unique) Moore-Penrose pseudo-inverse of the task Jacobian, and
P=1-J%J (5)

is the n x n orthogonal projector in the Jacobian null space, with I the n x n identity matrix, and g, € R™ is
a generic joint velocity.
The dynamic model of a n-link robot manipulator can be expressed by

M(q)G+C(q.4)qa+9(q) + Tewt = T, (6)

with standard notation. In this equation, 7., = —JCTFC is the torque resulting from external interaction
forces F'., J. is the Jacobian associated to the contact point, and 7 is the input vector torque that can be
computed according to the well-known model-based resolved acceleration control as

T =MI(q)4.+ C(q,9)q + g(q), (7)

where @, is the joint command acceleration to be suitably designed.

In the framework of operational space control [4], it has been shown that using the inertia-weighted pseu-
doinverse guarantees consistency of the transformation of task forces in the robot dynamics. The inertia-
weighted pseudoinverse of a Jacobian J is

Jhy=M gt gM g (8)

3 Cartesian Control of Redundant Robots in Presence of Obstacles

A Nonlinear Model Predictive Control approach has been followed for the control design of redundant robots in
order to avoid Cartesian obstacles. This control approach fits both to the use of a kinematic robot model or of a
dynamic robot model, with joint torques as actuating variables. However, since the OmniRob platform, which
is the target robot in the WP8.2 use case, cannot be directly controlled by the user using torques and forces,
a control design based on dynamic model of the robot is not applicable to the OmniRob platform. Therefore,
the control approach is presented here based on the kinematic robot model.
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3.1 Model Predictive Control

Nonlinear Model Predictive Control (NMPC) is well suited to exploit the robot redundancy of a given Cartesian
task, in order to realize additionally desired robot behaviours like collision avoidance. The NMPC approach
optimizes the system input and state sequences

V ={v(0),...,v(Np, — 1)} (9)
Q: {Q(D,---,CI(Np)} (10)

for the next NV, time steps by minimizing a cost function containing the trajectory following error, based on
the current measured joint positions g(0) = q,. The optimized input v*(0) is applied to the system. Then,
the optimization is repeated using the next measurement.

For following the desired Cartesian trajectory x(k) € R™, the cost function

Np—1
> Fo(k),a(k+1)) + B(g(Np)) — min (11)
k=0 Q
is minimized subject to the equality constraints
qlk+1)—qk) —Tw(k) =0 (12)
and the inequality constraints
—VUmax < 'U(k) < Umax (13)
Qin < Gk +1) < Gy (14)

for k =0,..., N, — 1. The equality constraints contain the system model . The inequality constraints
— guarantee that the joint velocity and position limits are met.
The terms of the cost function are

F(’U7 q) = UTQUU + qTQqq + etTQeet (15)
E(q) = 4" Req + €{ Reey (16)

with the trajectory following error
ei(k) = f(q(k)) — ze(k). (17)

Q.. Qq, Q., R, and R, are positive semi-definite diagonal matrices. With F'(v, g), high joint velocities, devia-
tions of the joint positions from the home position and the trajectory following error are penalized. Penalizing
the trajectory following error is needed to fulfill the trajectory following task. Penalizing the joint velocities
avoids unnecessary high input energy and oscillations. Avoiding large joint position values keeps the joints
away from the joint limits and results in a more natural motion. The term E(q) is only applied to the last
prediction step and is added to improve stability and accuracy.

During task execution, the robot redundancy can be exploited to avoid collisions with obstacles. There-
fore, in WP3.1 the above presented cost function is extended by a term that penalizes the squared distances
between the robot and the obstacle points,

Np—1
> Folg(k +1)) + Eo(q(Np)). (18)
k=0
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in order to additionally increase the distance between the robot and the obstacles. For smooth distance com-

putations, distances between test points on the robot pg ;(q) € R3 (i = 1,...,ng) and obstacle points
Poj € R? (j =1,...,n0) are considered,
2 2
di () = [|Pai(@) — po|"- (19)

For Fp and Eg different functions are possible. In the present case, the terms are chosen to be

FO(q) = G (20)
iz:; ]gl dzj(q) B dzz,min
Eo(q) =roFol(q) (21)

If dzz,j < dzmm, the term Fj is set to infinity.

Considering the quadratic distances between the robot and obstacles in the objective function results in
pushing the robot away from obstacles while at the same time the robot end-effector is controlled to follow
the reference pose as close as possible. Since at this stage there is still no guarantee that the optimized robot

configurations will not be in collision with an obstacle, the following additional constraints are introduced:
d3;(a(k)) — & i 2 0 02

fork=1,...,Np,i=1,...,ngand j = 1,...,no. Equation forces the distance between the robot and
the obstacle points to be always greater or equal than a specified safety distance d; min.

Using only the obstacle constraints without the cost function terms is also possible. But then, the
robot may move too close to the obstacles, keeping only the requested minimum distance, even if motions
at larger distances from the obstacles are possible or more convenient. In any event, especially in the case of
dynamic obstacles, it is desirable to increase the distance between the robot and the obstacles as far as the
task execution is not impeded.

3.2 Results

In the first example, the presented algorithm is applied to a KUKA LWR4 robot with seven revolute joints. The
control interface of the real robot (KUKA Sunrise) as well as of the simulated robot delivers the measured joint
angles and accepts joint velocity commands.

For the consideration of obstacles, eight test points on the robot are chosen with a minimum distance to
obstacle points of 0.2 m. These robot points are visualized in Fig. as blue spheres with radii according to
the minimum distances.

The robot manipulator is controlled to move from a start configuration to a reference pose by using the
joint velocities as actuating variables. A sample time of 7; = 0.1s and N, = 10 prediction steps are used,
which leads to a prediction horizon of 1s. In Fig.the start configuration of the example motion is shown.
Without considering the presence of obstacles. the manipulator successfully reaches the reference pose with
the joint configuration shown in Fig.

If the two obstacle points visualized in Fig. as green spheres are considered in the control algorithm, the
manipulator also reaches the deired end-effector pose but with a robot configuration that results in a larger
distance to the obstacle points (see Fig. .

In the second example, the developed method is applied to an omni-directional mobile platform equipped
with a 7-DOF manipulator (KUKA OmniRob with LWR4). The mobile manipulator has 10-DOF and is highly re-
dundant with regard to Cartesian reference poses. The robot is modeled according to the Denavit-Hartenberg
convention as a chain of revolute and prismatic joints. Two prismatic joints describe the platform translation
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(a) Start pose (b) Final pose without consideration of (c) Final pose considering obstacles
obstacles

Figure 1: Example of a manipulator motion to a reference pose with and without consideration of obstacles
(green spheres); the blue spheres represent the robot test points with minimum distances as radii.

Figure 2: Mobile manipulator in start configuration with reference trajectory (yellow) and obstacles (green).
The blue spheres represent the robot test points with minimum distances as radii.

in z- and y-direction with respect to a global frame. A revolute joint models the platform rotation about the
vertical robot z-axis.

For collision avoidance, ten test points are chosen on the mobile manipulator. The minimum distance for
the two points describing the platform is set to 0.6 m and the points on the manipulator arm have a minimum
distance of 0.2 m. In Fig. the corresponding volume approximation is visualized by blue spheres. The mobile
manipulator is controlled to follow the end-effector pose trajectory shown as yellow line in Fig.[2l Again, a
sample time of Ty = 0.1 s and /N, = 10 prediction steps are used. The control parameters are chosen in order
to achieve a good collision avoidance behaviour. The trajectory following accuracy is of less importance.

The resulting end-effector position in the y-z-plane can be seen in Fig. In case 1 (blue line), trajectory
control is executed without obstacles. The end-effector follows the reference trajectory well. The computing
time for one control step is below 20 ms except for the first optimization, when no appropriate start values are
available (see Fig.. In case 2 (green line), the six obstacles visualized as green spheres in Fig.are consid-
ered by the objective function, while in case 3 (magenta line) these are considered by the objective functionand
in the constraints. In both cases the deviation of the resulting end-effector pose from the reference trajectory
increases compared to case 1 (see Fig., especially near the obstacles for y € [2.5m, 3.2 m]. Nonetheless,
the mobile manipulator successfully moves through the obstacles without any collision and reaches the end of
the trajectory with acceptable deviations. The computing time in case 2 increases only slightly in comparison
to case 1. In case 3, the computing time is significantly higher due to the large number of constraints to be
considered. Still, even when moving closer to the obstacles (¢t > 20 s), the computing time remains acceptable
with values below 80 ms.

The detailed algorithm and the simulation results have been submitted to ICIT 2015 .
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Figure 3: Example of a mobile manipulator executing a trajectory following task without obstacles (case 1),
with obstacles considered only in the objective function (case 2), and with obstacles considered in the objective
function and in the constraints (case 3).

4 Redundancy Resolution with Unilateral Constraints

Atask is usually described as a desired reference trajectory for some geometrical components of the robot (the
end-effector pose, the Cartesian position of a point on the robot, a joint angle, etc.). Namely, at each instant a
desired value for these components is specified (bilateral constraints). Even if very effective, this task descrip-
tion lacks sometimes of expressivity. In many applications, it is not necessary to bring such robot components
to some specific values, but it is more convenient just to specify regions to which these components should
belong. This requirement can be coded with unilateral constraints. There are many situations where the use
of unilateral constraints is preferable or mandatory for a safe and reliable robot behaviour: for example, when
considering hard limits for the joint ranges, or limited robot motion capabilities due maximum joint velocities
or accelerations. Unilateral constraint can be associated to the presence of obstacles that have to be avoided,
to simulate virtual fixtures, or to accomplish particular tasks, such as keeping visual features in the FOV of a
camera, or the projection of the center of mass of a humanoid within the support polygon.

4.1 Redundancy resolution with the Reverse Priority method

The redundancy resolution scheme (4) can be extended to the case of [ multiple tasks at time ¢t = ¢, = kT,
eP =g p=1,..1, (23)

each of dimension m,, (typically, with Z;Zl m, < n), that are ordered by their priority, i.e., task ¢ has higher
priority than task j if ¢ < j. The execution of a task of lower priority should not interfere with the execution
of tasks having higher priority, and this hierarchy is obtained by projecting the p-th task in the null space of all
higher priority tasks.

In [15], redundancy is used for addressing the execution of multiple tasks with priority based on the idea of
computing first the solution for the lowest priority task, and then adding iteratively the contributions of higher
priority tasks. For this reason, the method has been called Reverse Priority (RP). Preservation of the correct
hierarchy of task execution is obtained if the portion of lower level tasks that is linearly independent from a
higher priority task is kept undeformed once the contribution for the execution of the higher priority task is
added. On the other hand, the higher priority task will dominate the portion which is in conflict. Such a result
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is obtained with the RP recursive equation

#
{p} _ q}gpﬂ} n T]Ep} ( JIEP}T]{J)}) (i}gp} J{p} {p+1}) (24)
where q,{f} is the solution that takes into account all low priority tasks up to p. The n X m, matrix T,{f} is

related to augmentation by J,Ep} of the reverse augmented Jacobian Jg;i}
{r}
W= (g gy T Iy
Jgr < Jy Jy o Jy ) ( Jgii} (25)
as
#
T = (T ). (26)

It is important to note that only the indicated submatrix T,ip} is needed, which can be efficiently obtained as

update of Jgji}# [17]. For more details please refer to [15].

In this framework, it is possible to introduce an auxiliary joint velocity command gy ;, that has to be pro-
jected in the null space of all tasks, by simply setting q;i 1 qy - This auxiliary joint velocity can be used,
e.g., to implement a projected gradient task [18], or to obtain the minimum variation of the joint velocity

command when incrementing time from t;_ to tz, by setting
{l+1} )\q{l} (27)

for some positive scalar A < 1 (typically, equal or close to 1).

4.2 Unilateral constraints

A unilateral constraint can be represented in the form of an upper bound
re < T, (28)

where z¢ = x¢(q) is some geometrical component of the robot expressed as a function of its configuration q.
If ¢ 4 is the nominal velocity of the chosen robot component that results from using redundancy to impose
all other tasks, the additional presence of the unilateral constraint is transformed into the differential
kinematic map

. free to move, if to <xoorzog <O,
To = . _ D (29)
0, ifrc > Zc and 20 g > 0.
In words, the feature x¢ is not allowed to have a velocity that will bring to exceeding the bound. Then, the
unilateral constraint can be represented as a equality task with Jacobian J(q) = ‘%g(q) and desired velocity

¢ = 0 that needs to be activated only when z¢ > Z¢ and ¢ 4 > 0.

Moreover, in many applications and especially when multiple tasks should be executed, it is important to
distinguish between soft and hard constraints. A unilateral constraint is handled as soft with respect to a task,
if the constraint will be fulfilled only when it is not in contrast with the task. It is considered as hard when it
should not be relaxed in any case. Therefore, any task in contrast with a hard constraint will be deformed.

One of the main features of the RP framework with respect to standard task priority schemes is the possi-
bility to insert a high priority task after the evaluation of the solution of all lower priority tasks. Assume that
the task associated to the unilateral constraint is inserted as the i-th task in the hierarchy, namely it is a soft
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constraint for all other tasks j with 7 < ¢ and it is a hard constraint for all other tasks with j > i. The nominal
velocity for the constrained robot component up to task ¢ + 1 can be obtained as

. L {i+1

Tod = chl{f 5, (30)
This velocity can be used to check whether the constraining task has to be activated or not, according to the
rule . Introducing anactivation variable i, we will have h = 1 when the constraint is active and hg = 0
when it is inactive, or

Bt — 0 if vo <ZTc oricg <0, (31)
“T1 1 ifee >0 and iog > 0.

Thus, the unilateral constraint will be added to the RP method simply as
L {i L {i+1 j i\ L {i+1
af" =i — el (JeuTl?) Tewal ™, (32)

obtained from by setting J,EZ} = Jox and :t,?} =xc =0.

To obtain a continuous insertion/removal of a constraint, the task activation variable h¢ should be varied
smoothly. To this end, the distance to the constraint and the velocity toward the constraint (given by the
solution computed so far) can be used to smoothly change the activation variable. For more details please

refer to [21].

t=0.00 [s] t=2.00 [s] t=4.00 [s]
*

Y [m]

time [s] time [s]

Figure 4: [Top] Snapshots of the resulting motion, with the robot represented in blue, the executed end-
effector trajectory in red, and the trajectory of the robot geometric component subject to unilateral constraints
in magenta. [Bottom] Time evolution of the constrained component (left), of the activation value (middle), and
of the norm of the primary task error (right).

4.3 Results

To show the effectiveness of the proposed method, we present a simulation performed in Matlab. We have
considered a planar robot with six revolute joints and links of unitary length. The primary (and single) task
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requires the robot end-effector position 1} to move between three Cartesian points connected by linear
paths, starting from g, = (0,0, 0,0, 10, —30) [deg]. The two unilateral constraints are an upper bound Z¢ =
0.5 [m] and a lower bound x = —0.5 [m] for the y-component of the position of the fifth joint (= the end of
the fourth link). The upper bound Z is considered as a hard constraint for the primary task, while the lower
bound X is a soft constraint for the primary task.

From the starting feasible configuration, the primary task requires the end-effector to move first to point
[4, 3], and then to point [2, —3]. Both these points cannot be reached in the presence of the two unilateral
constraints on the y-coordinate of the fifth joint. The results in Fig.@ show clearly the hard and soft nature of
the two unilateral constraints. The upper bound (hard constraint) is never exceeded, and thus the first desired
point will not be reached; on the other hand, the second desired point is reached with a relaxation of the lower
bound (soft constraint).

5 Task Space Control of Manipulators with Null Space Compliance

In this section we consider the problem of controlling a robot manipulator in the task space while ensuring a
compliant behaviour for the redundant degrees of freedom in the joint space. An example of application sce-
nario is depicted in Fig. where a robot working on a table experiences a contact with a human. This contact
may produce errors on the main task of the robot if active compliance is used to achieve a safe interaction.
Our goal is to minimise the error of the main task and, at the same time, to ensure safe interaction through
active compliance in the null space of the main task.

Figure 5: Robot working close to a human

To this purpose, two control schemes which do not require direct joint torque measurements are briefly
presented. More details can be found in [2]]. The first scheme is based on a disturbance observer which esti-
mates the external forces acting on the main task variables on the basis of the task space error. The second
scheme relies on the momentum-based observer [19]. In both cases, the overall stability of the system, with
asymptotic convergence of the main task and a desired impedance behaviour in the null space of the main
task, is proven through a rigorous analysis. A number of experiments are presented for a 7-DOF KUKA LWR4
robot.
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5.1 Null space impedance

For a redundant manipulator, redundancy lets us to have some kind of joint impedance and task space control
simultaneously. The so-called null-space impedance can be realized in the null space of the main task to control
the interaction on the robot’s body. The corresponding command joint acceleration in (7) is given by

o= J (@ — Jq) + N(gg + M, " (Kag + K,q)). (33)
which produces the task space and null-space closed-loop behaviour respectively as follows

Te— & =JM '1om, (34)
N(g+M; (K.q+Kpq) — M 1) =0. (35)

Here &. is a m-vector representing the command acceleration in the task space of dimension m < n, q =
g, — q Where g, is the desired trajectory or a rest configuration in the joint space, Jhis any (weighted) right
pseudo-inverse of the task space Jacobian matrix J, N = (I — JTJ) is the null-space projection matrix, and
M ; > 0 the desired inertia matrix, K4 > 0 the desired damping matrix, K, > 0 the desired stiffness matrix
(very often, these matrices are taken as diagonal).

The above choice of g, allows the joint space impedance in the null-space of the main task to be realized,
provided that the desired inertia matrix is chosen as M; = M(q). Moreover, if the external interaction
happens only at the end effector, it can be shown that the null space closed loop dynamics is not affected by
these forces only if the dynamically consistent generalised inverse J}*V[ is used [4]. Therefore, in the following,
we assume that My = M and J' = J#%,.

In order to impose a desired task to the end effector together with a impedance behaviour only in the null
space of the desired task, two issues must be taken into account.

The first problem is related to the fact that eq. 1i represents the impedance behaviour projected in the
null space, with dimension r = n—m, through n equations that, therefore, are not all independent. A solution
is that of considering a (n x r) matrix Z(q), such that JZ = O, and introducing a (r x 1) velocity vector v,
such that

qg=J"c+ Zv. (36)

Using these variables, it is possible to rewrite the closed loop dynamics in terms of the n = m + r equations

e — & =JM ‘Top, (37)
UV="U:— Z#MilTexh (38)
representing the task space and null space dynamics, respectively. The null space velocity vector v is, in gen-

eral, non-integrable [5], and thus a null space position error cannot be easily defined. However, a projected
joint space error can be used to define the null space command acceleration

Ue= _A;l((NV+BV)V_ZTKp‘j>a (39)

with K, B,, symmetric and positive definite matrix, v = v4 — v. The configuration dependent quantities
A, =Z"MZ and u,, are respectively the inertia matrix and the Coriolis/centrifugal matrix in the null space.
The corresponding closed loop equation is

A — (p, + B )+ ZTK g = Z" T, (40)

where ZT' 1., is the projection of the external torque on the null space. Equation can be interpreted as
an impedance equation defined in the null space, with inertia A, damping B, and projected elastic torque
Z"K,q.
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The second problem to solve is that the main task, represented by , may be affected by errors as a re-
sult of the external torques that are applied on the robot’s body. These errors, as long as the external torques
remain below a safety threshold, can be reduced by estimating and compensating the external torques act-
ing on the task variables. To this aim, two different methods, based on suitable disturbance observers, are
proposed in the following.

5.2 Task error based disturbance observer

The following proposition holds:

Proposition 1: Let us denote with 7 the estimated external torque and with ¥ = 7.,; — T the estimation
error. Under the assumption of constant (or slowly time-varying) unknown external torque, the task space
command acceleration

&.=—Pi+ A (1, + K)s + I T) (41)

with the disturbance observer .
T=-T;'J", (42)

together with the null space command acceleration guarantees that &, & and v go to zero asymptotically
while a compliant behaviour is imposed in the null space of the main task. Moreover, 7 remains bounded and
the closed-loop system is stable. In the above controller, s = —x + Pz, K, is a diagonal and positive definite
matrix, B, and I''; are positive definite constant matrices.

In the above equations, the quantities A, and p, are the inertia matrix and the Coriolis/centrifugal matrix
in task space, respectively. The controller-observer law of Proposition 1 can be modified according to Propo-
sition 2 where the command acceleration is based on the PD+ controller written in the task space:

Proposition 2: The task space command acceleration and disturbance observer in Proposition 1 can be
replaced by

#o= A (—(p, + D)+ K& + JT), (43)

and disturbance observer

1

f'\__ -1 . ~ N s

where -y is a properly chosen constant positive gain. The stability of whole system, the convergence of x, =
and v to zero, and the compliant behaviour in the null space of the main task are preserved.
The proofs of Proposition 1 and 2 are based on the concept of conditional stability and can be found in [2].

5.3 Momentum based observer

An alternative method relies on the momentum based observer introduced in [19]. The basic concepts are the
generalized momentum p(t) = M (q)q and the n-dimensional residual vector r defined as

r(t) = K, [p@) - /0 (r+CT(q, @) — gla) + r()dt] . (45)

with (0) = 0, K a diagonal positive matrix and p(0) = 0. These quantities can be computed using the
measured signals g and g, and the commanded torque 7. It can be shown that the dynamics of 7 is

r=—-Kir— KTes,

thus the residual vector is a filtered version of the real external torque, i.e. r(t) ~ —Tcyt.
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The idea is to use the residual vector as an estimate of the external torque in the task space control law.
Proposition 3: In the presence of constant (or slowly time-varying) unknown external torque, for positive
definite matrices K, and K, the task space command acceleration

o= — K&+ Ky — A T, (46)

together with null space command acceleration 1) and residual dynamics , guarantees that ¢, x, v and
estimation error ¥ =  + T.,t, g0 to zero asymptotically while a desired compliant behaviour is imposed in
the null space of the main task.

The proof of Proposition 3 can be found in .

5.4 Results

The proposed approaches have been verified experimentally on a 7-DOF KUKA LWR4 (n. = 7). The control
algorithms are executed through Fast Research Interface (FRI) library on a remote PC with Ubuntu operating

system. The remote computer is connected to the KUKA Robot Controller (KRC) unit through UDP socket with
sampling rate of 2 ms.

P—

Figure 6: [Left] An elastic ball in interaction with the KUKA LWR4 arm during the first set of experiments.
[Right] Snapshot of the KUKA LWR4 robot in contact with a wall during the second set of experiments.

The experiments have been performed for three cases: without observer, with task error based observer,
and with momentum based observer. In all cases the position of the end effector is assumed as the main task,
m = 3. Therefore, the robot has degree of redundancy r =n — m = 4.

In a first set of experiments, the interaction occurs with an elastic ball of 1200 N/m approximate stiffness
at a point of the robot arm close to the fourth joint. While the end effector is commanded to be in the desired
position, the sphere comes in contact with the robot, stops for 10 s, and finally is removed from robot contact.
In order to have the same scenario in all the experiments and guarantee repeatability, the ball is moved by a
position controlled industrial robot with constant speed of 4.5 cm/s along a straight line. A snapshot of the
experimental setup is depicted in Fig.lél(left).

In a second set of experiments, performance of the considered control schemes has been tested in a sce-
nario in which the end effector of the robot follows a trajectory in the task space and the body of the robot
experiences a contact with a vertical wall in a point close to the fourth joint, as shown in Fig.|§|(right). In this
case, both task space control and safety during contact are required. To increase safety and protect the body
of the robot from any damage during the experiment, the wall was covered with a soft pad.

These experiments have confirmed the theoretical findings. The experimental results are reported and
commented in detail in .
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6 Human-Robot Collaboration Using a Sensitive Skin

Starting from the solution described in IEI], we briefly present next a flexible skin prototype that is able to
estimate both the contact point(s) and the force vector(s). This sensor has been installed on a 7-DOF KUKA
LWR4 manipulator and tested in a human-robot collaborative strategy for manual guidance with multi-point
contact, based on admittance control and the multi-priority control formulation described in . The choice
of admittance control is motivated by the safety requirement to ensure a robot motion in the Cartesian space
coherent with the direction of the forces applied by humans. More details can be found in the paper [EI]

6.1 Sensitive skin

The working principle of the sensitive skin is based on the use of a PCB (Printed Circuit Board), constituted
by optoelectronic couples (emitter/detector), to detect the local deformations generated by an external force
applied to the deformable silicone cap that covers the optoelectronic layer.

Figure 7: Pictures of the flexible PCB before (left) and after (right) the mounting of optoelectronic components.

Based on this idea, originally presented in , the distributed artificial skin detailed in [EI] has been devel-
oped. Itis constituted by a number of identical sensing modules, each capable of measuring the contact force
vector acting on it. By exploiting some characteristics of the rigid version of the skin, as described in IEI], the
optoelectronic layer has been suitably re-designed in order to maximize flexibility of the new version of the
skin. The new solution, after soldering of all the components, is able to keep a high flexibility (see Fig., which
allows the skin patch to be conformable to a surface with minimum curvature radius of 2 — 3 cm, This is found
sufficient for applications that require to cover robot surfaces such as arms, legs, or torso.

The flexible skin patch has to be conformed to the surface selected for the final assembly. To this purpose,
a mechanical support, designed according to the shape of the surface selected for the final mounting, has been
designed and built. Moreover, since the actual assembly of the sensor (e.g., components soldering, bonding
of the silicone caps) could introduce differences in the response of the skin modules, a calibration procedure
has been set up and applied to each sensing module.

6.2 Human-robot collaboration

The sensing capability of the skin has been tested in a number of control strategies for human-robot collabora-
tion with a 7-DOF KUKA LWR4 robot manipulator. The algorithm presented here allows the manual guidance
of the robot using one or two contact points, where force sensing is available.

The first contact point p, € R3 is located on the end effector, where the force is measured using a commer-
cial wrist force sensor, while the second contact point p; € R3 is located on link 3, where a patch of sensitive
skin has been bonded.
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The robot control law is a model-based position tracking control in the joint space. The control torque
7. € R7 is computed as:

Te=M(q)(g.+ Kp(g.—q) + Kp(a.— q)) + g(q) — JL (@)F, — JL(q)F. (47)

being J.(q) € R3*" and J;(q) € R3*7 the (known) Jacobian matrices associated to the points p, and p,,
respectively, where the forces F, € R3 and F;, € R? are applied. It can be shown that the above control
law, with K p, Kp € R7™*7 suitable positive definite matrix gains, allows tracking of the commanded joint
trajectory g.(t). A further additional contribution is usually required in to account for the Coriolis and
centrifugal effects, which have quadratic dependence on the joint velocities. This term has been neglected
here, since joint velocities are usually small in human-robot collaboration tasks.

Note that the control torque ideally rejects the effects of the contact forces F' and F,. On the other
hand, the compliant behaviour required for manual guidance is entrusted to the commanded joint trajectory
q.(t), which is computed on the basis of suitable dynamic relationships, or admittances, between the sensed
contact forces and the displacements of the contact points. Such approach allows to implement the human-
robot collaboration strategy even on standard robot manipulators equipped with a position control interface,
rather than a torque control interface.

For a generic contact point p,, the desired acceleration p,. 4, velocity p. 4 and position p. ; can be com-
puted from the contact force F'. using the admittance equation:

ﬁc,d = Mc_l(FC - Dcpc,d)’ (48)

where M., D, € R3*3 are suitable positive definite matrix gains, with the meaning of mass and damping,
respectively.

Since the two contact points belong to the same kinematic chain, their motion cannot be assigned arbitrar-
ily and conflicting situations may occur. These conflicts can be managed by the control through a suitable task
priority strategy. Depending on the specific situation, the motion of one of the two contact points is consid-
ered as the main task, while the motion of the other point is considered as a secondary task. Only the motion
components of the secondary task that are not conflicting with the main task, i.e., those projected into the
null space of the Jacobian of the main task, will be executed.

The main task can be associated, for example, to the point that has been touched as first. Therefore, if the
human applies first a force F', at point p, on the end effector and then applies a force F', at point p, in the
robot body, the latter will cause a reconfiguration of the robot that will not affect motion of p,, which depends
only on F'.. Vice versa, if the human applies first a force F', at point p, on the robot body, then the motion of
p,, will depend only on F'y, no matter whether another force will be applied at the end effector or not.

By adopting the multi-priority control formulation presented in [8], the command acceleration g,. is com-
puted as

o= T (@ea — Te@) + T} (@ — Tog — Ty d (&g — J o)), (49)

where Jl is a generalized inverse of J, jz = - JLJE)JZ is the generalized inverse of J projected into
the null space of J ., while the command accelerations & 4, with ¢ = e, b are computed as

ftc,d = ﬁc,d + kd(pc,d - pc) + kp(pc,d - pc)) (50)

being k4, k), strictly positive gains. The vectors p. and p, are the actual velocity and position of the contact
point, respectively, and the vectors 1")07d, pc,d and p. ; are computed using the admittance equation , with
c = e, b. Equation assumes that the motion of point p, has higher priority with respect to the motion of
point p,. The change of priority can be achieved using the same equation, by replacing the subscript e with
the subscript b and vice versa.

Finally, when the Jacobians are close to a singularity, generalized inverses can be calculated more robustly
using damped least squares pseudoinversion.
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6.3 Results

A conformable skin patch is installed on the third link of the KUKA LWR4 robot (see Fig.. In the performed
experiments, the priority of the two tasks is defined by the operator on the basis of the first point touched. In
both cases, the desired position of the end effector is computed by the admittance equations , that use as
input the force F'. applied to the robot tip p,, as measured by an ATl Mini45 F/T sensor installed on the robot
wrist, while the position of the contact point on the robot body and the contact force are measured by the
sensor skin.

Figure 8: The skin sensor installed on the 3rd link of the KUKA LWR4 robot.

Two case studies have been considered to illustrate the robot behaviour with the different priorities.

The first case study is aimed at testing the behaviour of the robot when the operator touches first the end-
effector point p, and then the robot body at p,. In this case, the end effector motion is the task with higher
priority. The results are reported in Fig.EI It can be recognized that, during the first time interval of about 12 s
the operator touches only point p.. Comparing Figs.and m it can be seen that the end effector moves
according to the forces exerted at the tip. Moreover, from Fig. it can be recognized that, some motion is
induced also on point p; of the body, where the contact force, reported in Fig. is zero.

From Fig.it can be seen that, at around ¢ = 14 s the operator touches the point on the robot body,
since the forces measured by the skin sensor becomes different from zero. These forces produce a motion
only in the null space of the main task. In fact, comparing the time histories of the forces applied to the point
p. (Fig. and p, (Fig. with that of the velocities p, (Fig. and p, (Fig. , it is clear that the
end effector motion is only affected by the force applied to the tip, also when the configuration of the robot
is additionally brought in motion under the action of F',. On the other hand, the velocity p, derives from the
composition of the motion allowed in the null space with that produced by the main task.

Figure reports a similar analysis for the second case study. The desired position of the body point
is selected as the main task by touching first point p, on the sensor skin and then the robot tip p,.. Fig-
ures‘%)h_l%)'l and |10(d)|show that the velocities p, and p, are affected only by the force F'. Instead,
Figs.[10(a)}[10(b){and|10(c)|show that the end-effector motion does not produce any contribution to the veloc-

ity p,, which is the main task.

XXSAPHAM Page 17 of]2d]



ICT-287513 SAPHARI Deliverable D3.3.1

Velocity [m/s]

Velocity [m/s]

5 T T T
F F F

e e e
— X y z
Z
g o
o
L

_5 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40
Time [s]

(a) Force components F'. measured with the ATI F/T sensor.

_02 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40
Time [s]
(b) Velocity p, of the end effector.
1 L
£ 0
)
2
8 -1
F F
_2 ! b>1( byl 1 1 1 1
0 5 10 15 20 25 30 35 40

Time [s]

(c) Force components F';, measured with the skin sensor.

0.05

-0.05
-0.1]

-0.15

Time [s]

(d) Velocity p, of the contact point on the body.

Figure 9: First case study. All measurements are expressed w.r.t. robot base frame.
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Figure 10: Second case study. All measurements are expressed w.r.t. robot base frame.
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7 Control of Generalized Contact Motion and Force

In [11], we have introduced a method for localizing the contact point(s) between a human and the robot body,
as well as for estimating the associated contact force(s), by integrating the information collected by one (or
more) RGB-D external sensor with the proprioceptive data coming from the n-dimensional residual vector r
defined in eq. —see also Deliverable D.4.1.1. In particular, in the case of a single contact at any point of
the robot structure, the Jacobian of the contact point J .(q) is obtained using the RGB-D information, and then
the contact force can be estimated by pseudoinversion as

F. = (J7(q)r. (51)

We note that this method, which is alternative to the one proposed in Sec.@ works both in static and dynamic
conditions (i.e., when the robot is moving relatively fast while contact occurs). The force estimate can be
used then for controlling the human-robot physical collaboration according to paradigmatic schemes.

In fact, classical impedance control and direct force control have been extended in [22] from joint- or
Cartesian-based schemes to a generic contact point x. along the robot manipulator, considering within this
generalization the use of the estimate ].'?’C provided by in place of an actual measurement of the contact
force, every time this would be needed.

It should be mentioned that direct force control needs always a measure (or an estimate) of the contact
force, in order to close a control loop on the force error. Instead, standard joint or Cartesian impedance control
laws require a force measure only if we wish to change the natural robot inertia (defined at the proper level)
into a desired one. When the robot inertia is left unchanged, force sensing is no longer required (the term
compliance control should be used then). The same situation holds true also for our generalized impedance
control laws (replacing measured with estimated quantities).

7.1 Impedance control

Starting from robot model @, defining n(q, q) = C(q, ¢)q + g(q) and dropping from now on dependencies
for the sake of compactness, consider the inverse dynamics control law

r=Ma+n-J'F.. (52)

In ideal design conditions, the above control law realizes a feedback linearization, leading to a system of double
integrators ¢ = a. The auxiliary control input a is chosen so as to impose a mechanical impedance model
between the (estimated) contact forces F'. and the motion of the contact point x., or

~

Mg(&e. — &q) + Kg(e — 2q) + Kp(x. — 2q9) = F, (53)

where, as in , M > 0is the desired inertia matrix, K; > 0 is the desired damping matrix, K, > 0 is
the desired stiffness matrix (very often, these matrices are taken as diagonal), and x,(¢) is the smooth desired
trajectory of the contact point. Solving for &. from , the control input a is obtained as

a = J8 M (Myisy+ Kaé + Kye — MaJ.q+ Fe) + Py, (54)

with contact position error e = x;—x, projection matrix P.. in the null space of J ., and a generic acceleration
vector g € R that is used to shape the null space robot motion. Thus, the resulting torque control input is

T=MJ* M, (Md:'i:d + Kge+ Kpe — MyJ.q+ f‘) + MPjy+n—J'F,.  (55)
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In , observe that the contribution of f’c is given by
T=... +(MJ M-I F.. (56)

As expected, when choosing the desired inertia matrix M ; equal to the natural Cartesian inertia of the robot
at the contact point,
1 47\ 1
M, = (JCM JC) . (57)

also the estimation of the contact forces 1?’0 will no longer be needed, as expected. In fact, by using , itis
easy to see that MJiMM;l — JI' = 0. On the other hand, when we desire to impose a different inertial
behaviour at the contact, e.g., so as to achieve different apparent masses in different directions of the contact
operational space, we shall make use of the contact force estimate ﬁ‘c.

7.2 Force control

The contact impedance scheme realizes only an indirect control of the forces exchanged during the interaction
with the human, imposing instead to the position x. of the contact point a dynamic balance in terms of error
with respect to the desired position. The development of a direct controller for the contact force is crucial for
collaborative tasks that needs accurate execution in uncertain conditions.

With the reference to , choose in place of the acceleration

a =0 M (K (Fa—Fo) - Ko — MaJ.q) + Py, (58)

where F'; is the desired force at the contact point, the contact force erroris ey = Fy — IA%, and Ky > 0is
the force error gain matrix. Replacing in , the final torque control input is

T =MJ* M (Kfef — Kyi, — Mdch) + MP.jy +n— J'F.. (59)

The closed-loop system is then described by

~

Mdic‘f'Kdﬁc:Kf(Fd_Fc)v (60)

which shows that the force error will go to zero and the contact point will eventually stop whenever a constant
contact force is applied by the human.

Note that in the above expression of the control law, the specification of a desired contact force F'; in
the human-robot interaction is apparently an unconstrained one. However, there is an issue of interaction
task compatibility that remains open. We shall see through the experiment results that a careful choice of F';
should be made so as to avoid task inconsistency, with a resulting drift behaviour of the robot which would
seriously affect safety.

7.3 Results

A series of dynamic human-robot interaction experiments with the proposed controllers have been performed
on a KUKA LWR4. The workspace is monitored by a Microsoft Kinect depth sensor, positioned at a distance of
1.7 m behind the robot and at a height of 1.1 m w.r.t. the robot base frame. The Kinect provides 640 x 480
depth images at 30 Hz rate. All algorithms are executed on a quad-core CPU. The complete process of contact
force estimation and of motion and/or force control run at 5 ms cycle time.

With reference to the impedance control law , define xg = x.(t.) € R? as the initial (and constant)
position of the contact point when the interaction with the human begins at ¢ = t.. The desired velocity and
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acceleration are set then to zero, x; = &4 = 0. Due to the redundancy of this robot with respect to many
tasks, a null-space acceleration vector has been chosen as g, = —K nq, with K > 0, in order to damp out
self motions of the arm. Recall also that the KUKA LWR4 has a built-in gravity compensation. Thus, the actual
impedance control law used to command the robot from the user point of view is

r=MJ¥ M (er — Kyi, — MyJoq+ 17“) ~ MPKyg+Cq—-J'F, (61)
Similarly, for the force control law it is

= MJ" M, (Kfe ;- Ky, — Mdjcq) ~ MPKyg+Cg—JTF.. (62)

Impedance control with natural contact inertia

In the first experiment, the human pushes the robot at different contact points and on different links, as shown
in the snapshot of Fig. The control law is given by , with the desired inertia matrix at the contact chosen
equal to . The other impedance parameters were setto K; = 80- I3, K, = 500- I3,and Ky = 20- I+,
where I, denotes the k x k identity matrix. Figureshows the behaviour of the residual vector 7, of the
contact force estimate f‘c, and of the Cartesian position error e of the contact point with respect to its initial
position &y = x.(t.).

Figure 11: The set-up and the Cartesian reference frame for the contact impedance control experiments. The
colors of X, Y, and Z axes are the same used for the associated components in the plots of Fig.

Impedance control with modified contact inertia

In this experiment, the impedance scheme 1b was used again during the human-robot interaction. However,
the desired inertia matrix at the contact point was set to
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i.e., different from the natural one (which was also coupled). Non-uniform values were chosen on the diagonal,
so as to obtain different behaviours along the three Cartesian axes —see Fig. To enhance this effect, the
human pushes the robot always on link 6, although in different directions. The other impedance parameters
used were the same as before. In this case, the estimated contact forces ﬁ‘c are needed by the control law in
order to obtain the desired mass-spring-damper system. Figureshows the same quantities of the previous
impedance control experiment. When the contact is initially detected, the robot will move the contact point
with a dynamics that depends on the direction of the external force. When the hand is removed, the robot
brings back the contact point to the original initial position. As shown in Fig. the error dynamics in returning
to zero is faster along the Y axis, where M, , = 3. When increasing the desired inertia (e.g., along x axis), the
error dynamics slows down too.
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Figure 12: Contact impedance control with desired inertia matrix at the contact equal to the natural one. [Top]
Residual vector components. [Center] Estimated contact force components [Bottom] Contact position error
components.
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Figure 13: Contact impedance control with modified inertia matrix at the contact. [Top] Residual vector com-
ponents. [Center] Estimated contact force components [Bottom] Contact position error components.

Contact force control with possible drift effects

The purpose of this experiment was to show that it is highly not recommended to try to regulate human-robot
contact forces at arbitrary values and in multiple fixed directions of the Cartesian space. When the human does
not push or resist along a direction where a non-zero force reference has been specified, the robot typically
drifts in space in the attempt to regulate the incompatible desired force. This could be dangerous because an
unexpected movement occurs, through which the robot may collide with the human.

With this in mind, the parameters in the control law were setto Ky = 10.5- I3, Ky = 4.1 - I3,

K = 15- I, and the desired contact force was chosenas F; = ( 0 15 0 )T i.e.,onlyintheY direction.
Flgureshows the set upo for this experiment. The behaviour of the residual vector r, of the contact force
estimate FC, and of the Cartesian velocity @ of the contact point are shown in Fig. (15 When the human
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pushes the robot on link 6 and along the Y axis, the robot reacts properly and regulates the force components
to the desired level. However, when the human pushes the robot along the X direction, a drift occurs along
the Y direction, as shown in Fig. see, e.g., att = 14.8 s.

T

Figure 14: The set-up and the Cartesian reference frame for the contact force control experiments. [Left] The
human is pushing along the Y direction, where a non-zero desired force is specified (F}, 4 = 15 N), and regu-
lation occurs (see the first 12 s in Fig.. [Right] The human pushing along the X direction is accommodated
by the robot at the desired zero value (F, 4 = 0 N), but the absence of a human contrast in the Y direction
does not allow regulation to a non-zero force value in that direction, and generating instead a large velocity
drift (see the last 6 s in the third plot of Fig..

Contact force control with task compatibility

The contact force control scheme was used in this interaction control experiment, where the human
pushes the robot successively on link 3, link 5, and then link 6 (see the associated behaviours of the resid-
uals at the top of Fig.. To avoid task incompatibility in the human-robot interaction, only the norm of the
desired contact force F'; is specified, here at a constant value || F4|| = 15 N. However, the desired vector
F'; will change direction according to the human-robot contact type, being always aligned with the estimated
contact force vector FC, and may now vary without any restriction. We will have thus,

~ ~ ~

F, 13 E,
Fip,=15—" Fy,=15—Y [, =152
[ Fel [ Fell [P

The other force control parameters were the same used before.

Figureshows the same quantities of the previous force control experiment. The controller starts op-
erating after the first detection of a contact (around ¢ = 1.5s). When the human pushes with his hand on
the mechanical structure, the robot gets compliant in order to regulate the contact force at the desired value.
When the human tries to recede, the robot pushes against the human hand so as to maintain the desired
ﬁ’c = F;. The fact that the human may abandon the contact and then resume it in a different point and/or
along a different direction is no longer a problem for this correctly defined contact force controller. On the
other hand, this force control law is able to regulate contact forces only in quasi-static conditions (i.e., when
x. = 0). As long as there is a joint human-robot motion during a contact, some force error will result as shown

in Fig.
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Figure 15: Contact force control with drift motion due to task incompatibility. [Top] Components of the resid-
ual vector. [Center] Modulus of the estimated contact force. [Bottom] Components of the Cartesian contact

velocity x..
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Figure 16: Contact force control designed for automatic task compatibility. [Top] Components of the resid-
ual vector. [Center] Modulus of the estimated contact force. [Bottom] Components of the Cartesian contact

velocity x.
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