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ExecuƟve Summary
Many robot co-worker, assistant, and companion applicaƟons require the robots to perceive their
human partners and to interpret the acƟons of humans in the respecƟve task and environment con-
text. This deliverable will explain our work on the system under development for task Tϰ.ϯ of work
package ϰ. Task Tϰ.ϯ is to design and implement novel and powerful methods for the observaƟon
of human acƟons/movements and object interacƟons in the context of repeƟƟve joint human-robot
manipulaƟon tasks. This deliverable presents the result of integraƟng several human and object per-
cepƟon algorithms to a percepƟon system called RÊ�ÊS«�Ù½Ê�». The work was mainly performed
by researchers from the InsƟtute for ArƟficial Intelligence at the University of Bremen.

To provide the necessary perceptual capabiliƟes we worked on two categories of results:

• a novel framework tracking human moƟons and object interacƟon that implements human
acƟvity percepƟon as an unstructured informaƟon processing task; and

• special purpose algorithms for the detecƟon of humans and the esƟmaƟon and tracking of
their poses.

SAPHARI’s achievements in detecƟng and tracking of humans and objects are documented by
the following four publicaƟons one of which published in the proceedings of BMVC (ϮϬϭϯ) and three
publicaƟons currently submiƩed for review.

• Beetz, M., Blodow, N., Balint-Benczedi, F., Marton, Z.-C., Nyga, D., Seidel, F. and Kerl, C. (ϮϬϭϯ).
RoboSherlock: Unstructured InformaƟon Processing for Robot PercepƟon. SubmiƩed for re-
view to InternaƟonal Journal of RoboƟcs Research.

• Stommel, M., Edelkamp, S., Wiedemeyer, T., and Beetz, M. (ϮϬϭϯ). Fractal Approximate Near-
est Neighbour Search in Log-Log Time. BriƟsh Machine Vision Conference (BMVC), Bristol.

• Stommel, M., Beetz, M. and Xu,W. L. (ϮϬϭϯ). InpainƟng ofMissing Values in the Kinect Sensor’s
Depth Maps Based on Background EsƟmates. SubmiƩed for review to Sensors.

• Stommel, M., Beetz, M. and Xu, W. L. (ϮϬϭϯ). Model-Free DetecƟon, Encoding, Retrieval and
VisualisaƟon of Human Poses from Kinect Data. SubmiƩed for review to IEEE/ASMA Transac-
Ɵons on Mechatronics.
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ϭ IntroducƟon
Many robot co-worker, assistant, and companion applicaƟons require the robots to perceive their
human partners and to interpret the acƟons of humans in the respecƟve task and environment con-
text. This deliverable will explain our work on the system under development for task Tϰ.ϯ of work
package ϰ. Task Tϰ.ϯ is to design and implement novel and powerful methods for the observaƟon
of human acƟons/movements and object interacƟons in the context of repeƟƟve joint human-robot
manipulaƟon tasks. This deliverable presents the result of integraƟng several human and object per-
cepƟon algorithms to a percepƟon system called RÊ�ÊS«�Ù½Ê�». The work was mainly performed
by researchers from the InsƟtute for ArƟficial Intelligence at the University of Bremen.

To provide the necessary perceptual capabiliƟes we worked on two categories of results:

• a novel framework tracking human moƟons and object interacƟon that implements human
acƟvity percepƟon as an unstructured informaƟon processing task; and

• special purpose algorithms for the detecƟon of humans and the esƟmaƟon and tracking of
their poses.

SAPHARI’s achievements in detecƟng and tracking of humans and objects are documented by
the following four publicaƟons one of which published in the proceedings of BMVC (ϮϬϭϯ) and three
publicaƟons currently submiƩed for review.

• Beetz, M., Blodow, N., Balint-Benczedi, F., Marton, Z.-C., Nyga, D., Seidel, F. and Kerl, C. (ϮϬϭϯ).
RoboSherlock: Unstructured InformaƟon Processing for Robot PercepƟon. SubmiƩed for re-
view to InternaƟonal Journal of RoboƟcs Research.

• Stommel, M., Edelkamp, S., Wiedemeyer, T., and Beetz, M. (ϮϬϭϯ). Fractal Approximate Near-
est Neighbour Search in Log-Log Time. BriƟsh Machine Vision Conference (BMVC), Bristol.

• Stommel, M., Beetz, M. and Xu,W. L. (ϮϬϭϯ). InpainƟng ofMissing Values in the Kinect Sensor’s
Depth Maps Based on Background EsƟmates. SubmiƩed for review to Sensors.

• Stommel, M., Beetz, M. and Xu, W. L. (ϮϬϭϯ). Model-Free DetecƟon, Encoding, Retrieval and
VisualisaƟon of Human Poses from Kinect Data. SubmiƩed for review to IEEE/ASMA Transac-
Ɵons on Mechatronics.

Ϯ Tracking of human moƟons and object interacƟon as
unstructured informaƟon processing

The tracking of humanmoƟon and object interacƟon requires the combinaƟon of several specialized
percepƟon algorithms within one system. Especially in roboƟcs, where vision must provide task rel-
evant informaƟon about the environment and the objects in it to various planning related modules.

 

Page ϯ of ϳϯ



ICT–Ϯϴϳϱϭϯ SAPHARI Deliverable Dϰ.ϯ.ϭ

In order to handle this problem, we introduce RÊ�ÊS«�Ù½Ê�» a common framework for cogniƟve
percepƟon, based on the principle of unstructured informaƟonmanagement (UIM). For SAPHARI we
have worked on a framework for perceiving and interpreƟng human acƟviƟes, which is depicted in
the figures ϭ-ϯ.

Unstructured informaƟon is a term coined for web-scale learning systems and refers to data
where the form of the data does not reflect its semanƟc meaning. Considering RGBD images, one
can say that, in percepƟon systems, unstructured informaƟon is processed, since arrays of color in-
formaƟon and corresponding depth measurements do not reflect that the image represents scenes,
objects, humans and relaƟons between them. The basic idea of unstructured informaƟon process-
ing is to detect informaƟon pieces that have a deeper semanƟc structure and to infer this structure.
In robot percepƟon these pieces are oŌen objects and object configuraƟons and the structure of
these pieces including their texture, color, shape, category, pose, funcƟon, parts, possibly bar codes,
content, etc.

In RoboSherlock data pieces that are assumed to havemore structure are called Subjects of Anal-
ysis (SofAs). Typically they are hypotheses of objects and object configuraƟons. SofAs and groups
of SofAs are represented in a Common Analysis Structure (CAS), which contain the data pieces and
addiƟonal annotaƟons for the SofAs. The annotaƟons are computed by annotators, soŌware mod-
ules that look at the data pieces and exisƟng annotaƟons and add new annotaƟons or revise exisƟng
ones. Annotators are computaƟonal experts. For example, if the robot hypothesizes an object, an-
notators might take the respecƟve point cloud data and try to fit a geometric primiƟve to it. Another
annotator might try to find a bar code and look up the object in a product database. Yet another an-
notatormight take the picture of the SofA send it to Google goggles in order to annotate the CASwith
web pages that contain similar images. Other annotators might take the previous annotaƟons and
might add hypotheses about the object categories and semanƟc relaƟons. Again these annotaƟons
are hypotheses that are to be tested and ranked by other annotators.

In an UIM system large volumes of unstructured data are analyzed in order to discover knowledge
relevant for the end user (e.g the roboƟc agent). Unstructured informaƟon from the roboƟc process
or online sources is processed by CollecƟon Processing Engines (CPEs) described in a CPE Descriptor.
A CPE may contain several Analysis Engines (AE), where the flow of the data through different An-
notators is defined using Flow Controllers. AEs are either primiƟve (consisƟng of a single processing
block, expert) or aggregate (mulƟple primiƟve engines orchestrated by a Flow Controller).

Figure ϭ shows the pipeline in RÊ�ÊS«�Ù½Ê�» as used for SAPHARI. The figure includes examplary
results for eachAE. Sequences of RGBD images are used as input for the pipeline. At the beginning the
depth image is preprocessed in order to filter out known structures from the depth measurements
in order to reduce the computaƟonal effort and at the same Ɵme, missing depth measurements are
esƟmated, to gain more accurate measurements. The so updated CAS is used as input for the sub-
sequent AEs. These are used for human and object tracking. The examplary results show perceived
bodyparts and objects which are marked by a colored overlay. As a last step the CAS is “consumed”.
There are several ways to do so. InformaƟons about objects can be stored in a MongoDB, a Knowl-
edge Base, or returned as a response to a request that triggered the object percepƟon AE.

Figure Ϯ shows the result for an analysed scene. The rectangles show annotaƟons for two objects.
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RÊ�ÊS«�Ù½Ê�» discovered that there is a “box” of “Vitalis Crunchy with Honey” on top of the kitchen
countertop. The product informaƟon were gathered by sending an image of the region of interest to
Google Goggles. Actually there is “Vitalis Knusper Schoko” on the countertop, but addiƟonally to the
product informaƟon Googles provided an OCR result which sais “VITALIS Scholo”. ThemisdescripƟon
is due to the low resoluƟon of the current kinect sensor. Nevertheless one could try to enhance this
result with even more annotaƟons. On the right side one can see the annotaƟons for the second
object. Correctly detected as being on top of the countertop, having a round shape and white as
dominant color.

At last, figure ϯ shows the pipeline including all AEs used for SAPHARI. The green arrows define
the flow from AE to AE, so that is understandable which annotator depends on the output of which
annotator.

In [ϭ], as aƩached to this deliverable, we introduce several object detecƟon and tracking algo-
rithms integrated in RÊ�ÊS«�Ù½Ê�» and discuss the idea of UIM in more detail.
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Figure ϭ: Overview of the pipeline of AEs used within the context of SAPHARI. The collecƟon reader at the very beginning, the pre-
processing AE and subsequent the tracking AEs, running in parallel. They forward informaƟons to the CASConsumer which (a) stores
informaƟons in amongo database, (b) in a knowledgebase, or/and (c) returns informaƟon as a reponse to a request. Perceived bodyparts
and objects are marked by a colored overlay.
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ias.uima.scene.TFLocationAnnotation
Reference Description: on top of
Frame ID: /iai_kitchen/counter_top_island_link

ias.uima.scene.PrimitiveShapeAnnotation
Shape: round

ias.uima.scene.SemanticColorAnnotation
Color: white

ias.uima.scene.PCLFeatureAnnotation

URL: Translate Copy Search More
Bounding box 136x88+10+42
Text: VITALIS Scholo

ias.uima.scene.GogglesAnnotation

ias.uima.scene.GogglesAnnotation

URL: Translate Copy Search More
Bounding box 106x159+25+38
Product: Vitalis Crunchy with Honey 1.32lb

ias.uima.scene.PCLFeatureAnnotation

ias.uima.scene.PrimitiveShapeAnnotation
Shape: box

ias.uima.scene.TFLocationAnnotation
Reference Description: on top of
Frame ID: /iai_kitchen/counter_top_island_link

ias.uima.scene.SemanticColorAnnotation
Color: red

URL: Translate Copy Search More
Bounding box 42x29+30+36
Text: Ohne ist ab

ias.uima.scene.GogglesAnnotation

Figure Ϯ: An analysed scene. The original image is overlayed with colored regions represenƟng the recognized objects and bodyparts.
The rectangles on the leŌ and right exemplary show annotated properƟes for two of the recognized objects.
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ϯ Special purpose algorithms for perceiving human acƟv-
ity

ϯ.ϭ InpainƟng of missing values in depth images
Sincewe decided to use RGB-D sensors, like theMicrosoŌ Kinect, we have to deal withmissing values
in the recorded depth data. The Kinect sensor records depth data using structured infrared light. For
surfaces that do not reflect infrared, like glass, no depth measurements can be obtained. This can
lead to problems in any kind of percepƟon algorithms that heavily relies on high quality measure-
ments. These aspects and a way to esƟmate those missing values are explained in [ϯ] as aƩached to
this deliverable.

ϯ.Ϯ Preprocessing for robust gesture recogniƟon
Another challenging aspect of human and object detecƟon is to segment the image into meaningful
regions of interest. SegmenƟng the enƟre image, might result into too many objects that have to be
analysed. Hence, one can use apriori knowledge in order to remove unecessary image regions. For
example if the robot is used within a known environment one can use a model of the environment,
to remove known regions from the image to analyse. Same counts for the robot itself. For example if
there is the robotarm visible in the image, one can use the robot model to remove the corresponding
region from the image.

We therefore preprocess the depth image in order to incorporate as much of the system’s knowl-
edge of the environment as possible. Since the tracking RGBD camera is calibrated with respect to
the robot system, we can render the robotmodel in a virtual view from the same vantage point as the
depth image (c.f. Figure ϰ). The measured and virtual depth views correspond pixel-perfect, which
allows filtering out all points of the environment and the robot of which we know they are unneces-
sary for analysing the scene. The performance of this filtering step is criƟcal, since it needs to work
even if the robot arm is moving at high speeds, and cannot introduce large latencies for the tracker.
This is achieved by loading the measured depth image into a texture on the GPU, which the virtual
renderer has access to. A fragment shader is used to compare each depth value of the virtual view
with the corresponding measured depth value to perform filtering.

The whole process takes approximately ϭms on a standard GPU, and can filter the known envi-
ronment and the robot arm even when moving at maximum speed. The filtered depth image is used
as input to the object and human tracking components.

ϯ.ϯModel-Free detecƟon of human poses from rgbd images
For human-robot-interacƟon it is necessary to be able to perceive both fullbody and upper body hu-
man poses. In order to improve the limited scope of many model-based methods, in [ϰ] we propose
a spaƟo-temporal segmentaƟon of keypoints provided by a skeletonisaƟon of the depth contours.
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Figure ϰ: Filtering known structure (e.g. kitchen furniture) from the depth image. The original depth
image (top leŌ, binarized for convenience) is compared with virtual depth image (top right) to filter
out irrelevant regions (addiƟonal black regions, boƩom leŌ). The image on the leŌ boƩom is used to
mask the original depth image, resulƟng into the image shown on the right boƩom

ϯ.ϰ Clustering of human poses
When trying to analyse humanmoƟons, one faces the problemof how to cluster similar poses in huge
datasets. An intuiƟve approach is to use k-nearest-neighbour-search in order to get the k-most similar
poses to a query. Unfortunately is a very Ɵme consuming task to perform a complete neighbour
search. Hence, we present an approach to perform an approximate nearest neighbour search in
log-log Ɵme in [Ϯ], as aƩached to this deliverable.

ϰ Results
In [ϭ] we invesƟgate the potenƟal of a percepƟon system built on top of the unstructured informaƟon
management paradigm and propose several percepƟon algorithms to detect and track objects of
daily use. AddiƟonally to those algorithms we integrated the model-free human tracking approach
of [ϰ] and the approach presented in [ϱ]. This combinaƟon of two different “experts” supports the
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“ensemble-of-experts” paradigm.
Figure ϭ shows a blackbox overview of the pipeline of AEs used for this deliverable. For easier

understanding we included a representaƟve image for each AE. There is a collecƟon reader, which
currently only reads data from the kinect sensor and an AE that does image preprocessing for the
subsequent AEs. The subsequent AEs might run in parallel and perform

• object detecƟon and tracking and

• human detecƟon and tracking.

The input of each run is a RGBD-image. At the very beginning the original depth image (shown on
top the preprocessing AE) is preprocessed to fit our needs, which means that we filter out known
regions that are not necessary to understand the scene. The result is shown at the boƩom of the
AE. The preprocessed depth image and the rgb image are used as input for the following AEs. At
the end all relevant informaƟon about an analysed scene are postprocessed by a CAS consumer.
Postprocessing means, (a) storing informaƟons in a mongo database, (b) in a knowledgebase, or/and
(c) returning informaƟon as a reponse to a request. The laƩer is done in order to improve the realƟme
capability of the system, which means, that object detecƟon is only performed aŌer being triggered
by a subsystem that needs object informaƟons. Hence, object detecƟon has not to be performed for
every single frame.

Figure Ϯ shows an example of an analysed scene using RÊ�ÊS«�Ù½Ê�». The colored regions rep-
resent detected objects and bodyparts and on the leŌ and right we show the annotated properƟes
for two of the recognized objects. For the cereals Google Googles provides very useful informaƟons,
like OCR results and product informaƟons. AddiƟonally to that Goggles provides URLs that could also
be parsed to gather even more informaƟons. Other annotators give informaƟon about the relaƟve
posiƟon of the object in the environment (“on top of” and “/iai_kitchen/counter_top_island_link”),
the primiƟve shape (“box”) and the dominant color (“red”).

To achieve realƟme for human detecƟon we integrated the human detector presented in [ϱ],
which uses a CUDA GPU implementaƟon and runs at approximately ϭϱ fps. In contrast to that, in [ϰ]
we present an easier approach based on skeletons and a feature based clustering to detect people.
Combining those approaches can improve the accuracy of detecƟng people. In a next step we are
going to apply a parƟcle filter in order to improve the realƟme capability, since that could reduce the
number of necessary detecƟons of people.

Within SAPHARI, we look at robots operaƟng closely together with humans, and this brings safety
consideraƟons also for the percepƟon systems. The percepƟon system showed in this deliverable
helps the robot be aware of his environment and to know where a human is located relaƟve to its
own posiƟon or what the human might do next. This informaƟon will allow the high-level control
systems to control the robot in a safe way.
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Abstract

A pressing question when designing intelligent autonomous systems is how to integrate
the various subsystems concerned with complementary tasks. More specifically, robotic vision
must provide task relevant information about the environment and the objects in it to various
planning related modules. In most implementations of the traditional Perception-Cognition-
Action paradigm these tasks are treated as quasi-independent modules that function as black
boxes for each other. Often these subsystems are running in completely different frameworks,
with a thin communication interface or middle-ware between them. While each subproblem
poses specific requirements that can make fusing them more challenging, it is our view that at
least perception can benefit tremendously from a tight collaboration with cognition.

In this article we present a common framework for cognitive perception, based on the prin-
ciple of unstructured information management (UIM). UIM has proven itself to be a powerful
paradigm for scaling intelligent information and question answering systems towards real-world
complexity. Complexity in UIM is handled by identifying (or hypothesizing) pieces of struc-
tured information in unstructured documents, by applying ensembles of experts for annotating
information pieces, and by testing and integrating these isolated annotations into a comprehen-
sive interpretation of the document. This is enabled by a common type structure that defines
the semantics behind the annotations and allows for seamless linking with knowledge-bases and
intelligently selecting the necessary processing steps based on the observed data.

We will describe RoboSherlock, an open source software framework for unstructured

information processing in robot perception and sketch a feasibility study of a perception system

built on top of the framework that indicates the potential of the paradigm for real-world scene

perception.
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1 Introduction

Consider a household robot assistant, a mobile personal robot that is to perform household
chores such as setting the table, loading dishwashers, and cleaning up. Such a robot has
to find the objects it is to fetch such as my coffee mug or a breakfast bowl. The objects
are typically in particular places, in drawers, on tables, or in the refridgerator. The robot
also has to look where the objects should be grasped and look for the proper places to put
them. In many cases objects are only partially described and the robot needs to perceptually
examine them to get additional information needed for manipulating the objects such as their
accurate pose or a geometric reconstruction to parameterize the grasp appropriately. From
the perspective of the control system all these perceptual tasks can be phrased as queries that
the perception system is to answer and the perception system can be viewed as a question
answering system.

These are some of the simpler queries, but robot perception systems might be required
to answer much more complex queries. [1] consider the task of cooperative table setting in
which they combine perception and first-order probabilistic reasoning to enable the robots
to bring the missing items. Or, Tenorth et. al. [2] enables robots to competently handle
objects by perceptually decomposing objects in their parts and reasoning about the parts.
A number of researchers have equipped robots with means to perceive object affordances as
reviewed in [3]. Answering such queries require competences that go beyond perception alone.
They require the perception system to employ knowledge-based reasoning to answer queries
competently. A particular challenge is that the set of queries is open-ended and therefore the
robot has to be able to competently answer new queries.

In contrast to these requirements robot perception today is mainly tackled through indi-
vidual algorithms that solve specific perception tasks under specific conditions. Currently,
we have several leading edge methods for detecting and localizing known objects based on
previously learned object models in perceived scenes: MOPED [4] can detect and localize tex-
tured objects, BLORT [5] can reliably detect cuboid and cylindric objects, and LINEMOD
[6], which returns positions but not the poses of the objects it detects. There are many
methods for training and learning classification systems for object categorization, e.g. [7, 8].
There are also several model-generating methods, for example for object reconstruction [9].
In addition, there are services such as Google Goggles, which a robot can send images to
and receive web pages with similar images from which textual information can be extracted,
and so on. Many other special purpose methods such as door handle detectors [10, 11],
scene gist classifiers [12], etc. are available. Collections of such algorithms are made avail-
able as software libraries such as ECTO1, PCL [13], OpenCV [14] and the STAIR Vision
Library [15].

Clearly, libraries of individual algorithms using common data structures and homoge-
neous application programmers’ interfaces do not suffice for realizing the perceptual capa-
bilities needed by autonomous manipulation robots acting in real-world environments. They
need perception systems that can synergetically combine available perception methods to
meet the information requirements of manipulation robots and scale towards open environ-

1http://plasmodic.github.com/ecto/

2



ments. Such systems have to reason about which methods to apply in order to accomplish
a given perception task. They have to bridge the gap between the output of algorithms and
the information that a robot requests. They also have to combine results of individual algo-
rithms into a coherent and plausible answer for the query. The investigation of perception
systems that have these kinds of functionality has received surprisingly little attention so
far.

Another aspect of robot perception that deserves to be highlighted is the mismatch
between the structure of data (images as arrays of pixels) and the hierarchical, abstract, and
relational information that is depicted by the images. Extracting relational information from
unstructured data is a research challenge on its own. unstructured information management
[16] deals with these issues in the context of web-scale information systems.

Our conclusion from our previous considerations is that we propose that autonomous
manipulation robots should be equipped with perception systems that can answer open sets
of queries of the robot control systems using ensembles of experts that encapsulate leading-edge
perception algorithms that solve specific perception problems. We propose that the system
should start with hypothesizing substructures in the low-level data that are meaningful, that
is the ones that reflect depicted objects and relational structures. The system then runs the
experts methods on the substructures they are competent for and the expert annotate the
respective structures with the information they can compute. The individual annotations are
considered as hypotheses and are tested, combined, and ranked by other experts to produce
the most appropriate answer to the original query.

Query answering systems that operate this way already exist and have had impressive
success in scaling towards open real-world problems using noisy, incomplete, ambiguous, and
even inconsistent real-world information. Perhaps, the most promising example is Watson
[17]. Watson is a question answering system that has won the US quiz show jeopardy! against
the champions of the show demonstrating an unprecedented breadth of knowledge and the
crucial ability to correctly judge it’s own competence in answering a particular questions. Key
success factors in Watson were unstructured information processing, hypothesis generation,
testing, and ranking, and the use of annotation and ensembles of experts. We believe that
the same concepts is capable of helping to scale robot perception systems towards real-world
tasks.

In this article we transfer the ideas of unstructured information management to the prob-
lem domain of perception for autonomous manipulation robots. To this end, we take the
UIMA, an opensource middleware software framework and extend the framework to be ap-
plicable to robot perception and perception-guided manipulation. The framework provides
data structures and representations for semantic unit hypotheses and annotations for hy-
potheses, mechanisms for the context-directed application of expert methods, mechanisms
for testing, filtering, evaluating, and ranking answers and combining information from differ-
ent sources. Extensions needed for robot perception include mechanisms for incorporating
unstructured information processing into perception-guided control and a datatype system
for robot perception. Using the framework we can build perception systems that can extract
more comprehensive information from perceived scenes and can combine information from
different methods more coherently.

The main contributions of this article are the following ones:
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• The design and implementation of a framework based on the premise of treating per-
ception as an Unstructured Information Management task. This includes ensemble-of-
experts methods, infrastructure for the orchestration and execution of these methods,
and well-defined, open and extensible object descriptions.

• We combine knowledge processing and perception in an organized, flexible, reusable
and extensible manner. In particular, we propose two key embodied symbolic reasoning
mechanisms:

– object identity resolution, which is a first-order probabilistic reasoning technique
that computes the probabilty that two descriptions of perceived objects refer to
the same object. The underlying reasoning model takes probabilities of mov-
ing objects and that objects might look different under different conditions into
account.

– learning and reasoning about first-order probabilistic models of objects, their per-
ceptual features, and their co-occurrence in scenes. This reasoning techniques
boosts perception results by exploiting background knowledge such as very few
objects with a logo of a particular brand are round, milk tetrapaks usually occur
in scenes taken from the refridgerator, etc.

The remainder of the article is organized as follows. In Section 2 we present the state
of the art and relevant related work, followed by an overview of our approach in Section 3.
Details about implementation and key parts of the system are presented in Sections 4 to 7.
Finally in Section 8 we present the experiments conducted and the obtained results.

2 Related Work

Existing perception systems usually consider the case where a database of trained object is
used to match it with sensor data. Even more, many systems focus on individual algorithms
that only work on objects with specific characteristics, e.g. point features for 3D opaque
objects [18], visual keypoint descriptor based systems like MOPED [4] for textured or [19]
for translucent objects. There are as of now no methods to perceive “everything”. While the
detection and accuracy of individual algorithms are continually improved it will still be very
hard – if possible at all – to achieve the recall and accuracy levels needed in manipulation
tasks.

However, a large number of methods exist that can handle some of the subproblems
of perception reasonably well. Many of these methods are complementary and could be
combined to boost performance. In the area of visual perception for cognitive systems the
ensemble of experts approach has received surprisingly little attention, though.

Jain et al. [20] provide a taxonomy for ensemble methods, categorizing them based on:

• the architecture type (which can be parallel, cascading, gated, hierarchical or a com-
bination of these);

• whether or not the ensemble is trainable;
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Figure 1: Perception as Unstructured Information Management: Common Analysis Struc-
ture (CAS) holds the original high-res camera (1) and depth (2) images, which act as input
documents for our RoboSherlock system (3). The CAS (4) also contains information
concerning known structure (such as the 3D semantic map, light blue), and filtered regions
(gray), as well as Annotations referencing various parts of the document (green labels).

• according to the level of information the members of the ensemble produce about their
classification decisions;

• whether it is adaptive, which means that the ensemble weights the contribution of a
member to the decision based on the input pattern.

In another machine learning application domain, the NetFlix Prize, as individual teams
started to join efforts, ensemble learning became a popular, and very successful approach
[21]. We expect a similar development in the perception field as well, as combining various
approaches with complementary strengths can improve over the individual performance of
the methods [22, 23] and make it generalize better [24].

There are a lot of works oriented at creating perception libraries which are a collection
of task specific algorithms, e.g. ECTO2, PCL [13], OpenCV [14] and the STAIR Vision

2http://plasmodic.github.com/ecto/
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Library [15]. The perception tasks that such a robot has to accomplish go substantially be-
yond what is supported by current perception libraries and frameworks. Frameworks, mostly
based on middle-ware like ROS3, such as SMATCH [25]) or REIN [26] have targeted the ease
of program development but the problems of boosting perception performance through more
powerful method combination has received surprisingly little attention.

An early example of a robotic perception system was described by Okada et al. [27],
where a particle filter based integration of multiple detectors and views was achieved. The
probabilistic fusion of different results corresponds to a simple rule ensemble, i.e. one that
is not trainable. Similar methods have been employed for semantic mapping approaches
[28, 29], but in this work we propose to use a more flexible strategy. The UIM architecture
allows both for the incorporation of the ensemble learning framework from [8] and allows for
steering the processing workflow in order to support active classification [30].

RoboSherlock was created by extending the pluggable Apache Unstructured Informa-
tion Management Architecture open source project 4, that supports development in Java and
C++ (Perl, Python and TCL via SWIG5). The UIM Architecture (UIMA) incorporates the
work of the Open Advancement of Question Answering Initiative [31], and it is designed with
a distributed architecture, multiple processing modules working together, and self-adapting
strategies for data interpretation in mind. By providing such functionalities for a perception
system, we can facilitate more advanced robotic capabilities [32].

3 Overview

In this paper we propose RoboSherlock an architecture to build scalable robot perception
systems.

RoboSherlock considers point clouds and camera images as being unstructured infor-
mation. Unstructured information is a term coined for web-scale learning systems and refers
to data where the form of the data does not reflect its semantic meaning. For example, point
clouds are arrays of depth measurements together with color information. The data does not
reflect that the point clouds represent scenes, objects, object parts, and relations between
them. The basic idea of unstructured information processing is to detect information pieces
that have a deeper semantic structure and to infer this structure. In robot perception these
pieces are often objects and object configurations and the structure of these pieces include
their texture, color, shape, category, pose, function, parts, possibly bar codes, content, etc.

In RoboSherlock data pieces that are assumed to have more structure are called Sub-
jects of Analysis (SofAs). Typically they are hypotheses of objects and object configurations.
SofAs and groups of SofAs are represented in a Common Analysis Structure (CAS), which
contain the data pieces and additional annotation for the SofAs. The annotations are com-
puted by annotators, software modules that look at the data pieces and existing annotations
and add new annotations or revise existing ones. Annotators are computational experts.
For example, if the robot hypothesizes an object, annotators might take the respective point

3http://ros.org
4http://uima.apache.org/
5http://www.swig.org/
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Figure 2: Schematic overview of our UIMA-based object processing framework.

cloud data and try to fit a geometric primitive to it. Another annotator might try to find a
bar code and look up the object in a product database. Yet another annotator might take
the picture of the SofA send it to Google goggles in order to annotate the CAS with web
pages that contain similar images.

Other annotators might take the previous annotations and might add hypotheses about
the object categories and semantic relations. Again these annotations are hypotheses that
are to be tested and ranked by other annotators.

The design of the RoboSherlock toolbox facilitates and supports unstructured infor-
mation processing, hypothesis generation, testing, and ranking, and the use of annotation
and ensembles of experts.

For a demonstration let us consider the example scenario from Fig. 1. At an initial
phase the CAS only contains the scene, this being our SofA (bottom row of Fig. 3). While
being processed (Fig. 3), the CAS gets filled with hypotheses and beliefs about the scene
through annotations. In the considered scene, first a hypotheses is generated about the
region of interest. Afterwards this gets refined by creating object hypotheses. and even
more information is gathered about these objects, in the end generating a semantically rich
collection of annotations.

3.1 Analysis Engines in RoboSherlock

In accordance to Watson, sense making from raw perception data is organized in programmer-
specified analysis engines. For specific query types analysis engines specify the expert meth-
ods that are to be employed, the order in which they are activated and the data flows during
the analysis process.

In an UIM system large volumes of unstructured data are analyzed in order to discover
knowledge relevant for the end user (e.g the robotic agent). Unstructured information from
the robotic process or online sources is processed by Collection Processing Engines (CPEs)
described in a CPE Descriptor. A CPE may contain several Analysis Engines (AE), where
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Figure 3: Example of a pipeline execution in RoboSherlock showing how the content of the
CAS changes over time and the main parts of the system: CAS producer, Analysis Engines,
Cas Consumers and Annotators. Note: the locations of MOPED [4] and Blort [5] are marked
with different color because at the moment they represent a possible integration

the flow of the data through different Annotators is defined using Flow Controllers. AEs
are either primitive (consisting of a single processing block, expert) or aggregate (multiple
primitive engines orchestrated by a Flow Controller). An example of how the execution of
an AE can look like is shown in Fig. 3. Here the CPE contains two AEs, inside which several
run sequentially or in parallel in order to annotate the data, at the end of execution data
from the CAS being stored in a data or knowledge base. The annotators connected with
dashed lines represent potential integration points for other perception experts that we could
make use of: e.g. MOPED [4] could be very useful for generating object hypotheses, while
Blort [5] and correspondence grouping from PCL are good examples of what an expert that
refines the hypotheses should be.

3.2 Integrating Perception Capabilities into RoboSherlock

Integrating a legacy perception component into RoboSherlock requires three steps: First,
declaring the data structures of the perception system in the RoboSherlock type hierar-
chy. Second, wrapping perception routines as RoboSherlock hypothesis generators and
annotators. Third, specifying the control flow for complex perception tasks in terms of Ro-

boSherlock pipelines. RoboSherlock already provides type hierarchies and wrappers
for PCL and ROS data structures and modules. The control flow specified in RoboSher-

lock pipelines are then applications on top that can offer very flexible and task adaptive
processing for semantically rich problem formulations.
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In our scenario (like the one in Fig. 3), a typical Collection Processing Engine can be
sketched as follows: A CAS is created that holds the Kinect sensor data and interesting
information about the robot (e.g. localization data). The CAS holds one or more Subjects
of Analysis (SofA), which can be annotated in Index Repositories for convenient search,
retrieval and structuring. It can be thought of as a mixture of message passing and black
board systems. These annotations usually reference a subset of the SofA, such as a region in
text or a mask in an image. 6Annotators – experts – can filter the contents to obtain the data
relevant for their tasks, create new SofAs, annotations and index repositories. Annotators
create hypotheses about objects (cf. Sec. 4.1). Potential objects are then annotated, creating
rich feature representations (cf. Sec. 4.2) that get analyzed in total by entity resolution
modules (cf. Sec. 5)

In the end, the resulting belief states are collected in a data base for convenient visualiza-
tion, reuse in later processing iterations, and to serve as data collection for different research
scenarios (cf. Sec. 6).

This hierarchy of execution modules enables easy combination of results from different
experts and seamless integration with knowledge bases, enabling the perception system to
fulfill the functionalities mentioned in Section 1. Another important aspect is that storing
the results of experts as annotations in the CAS during execution we have easy access to all
information resulting from the different perception algorithms.

3.3 Principles of RoboSherlock

Principle 1: Consider perception as a problem of making sense of sensor data. Un-
structured information is defined as information without an underlying a-priori data model
or which cannot be easily expressed in a relational table. While it has usually been associ-
ated with textual data we apply it to sensor data. An RGB-D scan can be regarded as a
large set of raw data points and low-level features which are a function of latent underlying
structure in the real world, such as furniture or other objects.
Principle 2: Annotation of object hypotheses through ensembles of experts.
Annotations are a key part of the overall system. The idea behind having annotations is
that the results of every expert that is run on a certain scene are stored with respect to the
original scene, allowing this way the cross-examination of the results from different experts.
Principle 3: Information fusion and hypothesis selection Results obtained from
complementary or competing methods need to be merged and filtered in order to arrive at
a final decision. This is essential for combining strengths and mitigating weaknesses, thus
improving performance over the individual methods.

The mechanism enabling this is self-analysis of the system’s competences and abilities.
This is made possible by attaching confidences and other quality measures to both processing
modules (Annotators) and their statements (Annotations) by collecting respective statistics.
These can also be used in algorithm selection by reasoning over available computing resources
and expected returns [30]. Examples include the synergistic effects of drawing on multiple

6In contrast, data flow in e.g. ROS is very rigid, and message channel (“topic”) connectivity encodes
semantic meaning of data. Addition or modification of information to messages can be cumbersome.
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heterogeneous object descriptions, but also the fusion of different segmentations.

4 Object Hypothesis Generation and Annotation

The main perceptual task that we are using RoboSherlock for so far is the detection of
objects and examining properties of objects in order to answer queries about the objects
and the scenes they are part of. In this section we will describe analysis engines and their
components that we have designed for these perceptual tasks.

When dealing with object recognition, reconstruction, classification or similar object-
centric tasks, segmentation is an integral part, both in importance and in representation.
Pixel-level post-processing usually requires image masks, 3D point cloud based feature de-
scriptors require 3D regions or point cloud subsets (index vectors) to operate on, whereas
higher-level knowledge reasoning on objects is mostly concerned on where something is in
terms of some coordinate system.

4.1 Hypothesis Generation

We propose to treat segmentation slightly more abstractly by dealing with object hypothe-
ses on a higher level, which are subclassed for the different instantiations of segmentation
methods. This way, we combine different algorithms in a consistent manner, e.g.:

• an attention mechanism that detects points of interest in pixel coordinates creates a
region of interest (point and extents) in the camera’s tf frame.

• image segmentation algorithms (e.g. color-based) can generate masks or region maps,
referencing the respective image.

• point cloud segmentation relying on supporting planar structures can generate index
vectors.

• even uncommon object hypothesis generators such as a skeleton tracker which observes
a “put down” event could just generate a point in 3D space to be analyzed as a potential
region of interest.

Note that most of these types can be converted between each other relatively trivially,
e.g. projecting a point cluster from a point cloud into a camera image, or transforming an
image region to a grasping pose in robot-local coordinates. In a well-integrated platform
such as the PR2, this can even be done at a later point in time from another vantage point
to some extent (e.g. through the tf library). This allows us to retrieve the camera image
region of interest corresponding to a 3D point cluster, enabling the combination of image
analysis annotations and point cloud processing.

We use a 3D semantic map of our environment [33] which we render off screen from the
sensor point of view. The resulting virtual depth image is compared with the real one, and
the known “background” segmented on a per-pixel level. This also allows us to augment the
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description about an object cluster with a semantically meaningful object location (e.g.̀‘on
top of sink counter link”).

This way, it becomes possible for the designer of the component engine descriptors to
formulate regions of interest in the environment to be connected to different processing
pipelines: e.g. “object detection should be performed on all tables, counter tops and shelves”
or “ensure empty space in front of the dishwasher” before opening it. This is done analogously
to previously published methods such as table top object segmentation, with an additional
prior on the locations of supporting structures. The result of our segmentation engine is a
timestamped Scene object, as described above. As this results in point cloud clusters, we
augment each cluster with the corresponding image regions from the robot’s cameras, thus
obtaining a higher-resolution image of the object that is suitable for image-based cluster
annotation.

4.2 Object Annotation

One can think of these multivariate descriptions of clusters as more or less independent
object hypotheses which can be annotated with various feature descriptions in parallel. In
our case, we have explored and implemented the following annotations and algorithms.

GenericFeatureFromNormalsEstimator is an annotator which can process any point
cluster (with estimated normals) and compute any subtype of pcl::Feature, depending on
parametrization. This utilizes the largest collection of open source 3D feature computation
methods, including VFH, CVFH, FPFH, Spin images, RIFT, SHOT etc.

SACModelAnnotator is also a wrapper around PCLs’ RANSAC based model fitting.
It can fit the models defined in PCL (planes, lines, circles etc.) to a given point cluster.

Another annotator is based on Google Goggles7, which is a web service and smart phone
app allowing the analysis of an image, which generates a highly structured list of matches
including product descriptions, bar codes, logo/brand recognition, OCR text recognition or
a list of similar images. Note that for each Goggles reply, there is an abundance of additional
information, such as URLs to web stores, price ranges, translations etc.

To compensate the latency of online Goggles queries, we continue processing the cluster
while the query is issued asynchronously and make use of tracking capabilities (cf. Sec. 5)
to attach the result to the corresponding object track when it is done. This is usually not
much of an issue, since during the round-trip time of around 2 seconds, most scenes remain
mostly unchanged.

In order to reduce network bandwidth, the Goggles annotator contains a cache that
uses perceptual hashing on the cluster image to prevent continuously resending very similar
image regions. This principle of composition of change detection with any algorithm could
be applied to a large number of annotators and should in future work be factored out as a
general capability.

An important annotator for the entity resolution is the SimilarityAnnotator. This
module, when used, defines a similarity measure between the object hypotheses.

7http://www.google.com/mobile/goggles/#label

11



In general it is not sufficient to rely on just one feature, because e.g. a purely geometry-
based object description like a shape classification fails to incorporate color or texture prop-
erties and might therefore misjudge the actual similarity. We incorporated a relatively el-
ementary approach based on combining multiple feature dimensions using the geometric
mean. This problem,not being trivial deserves a more thorough investigation in the future.

Let a Scene S be a set of object observations: S = {oi|i ∈ [0 . . . n]}. Each object
observation oi in turn is a tuple of a set of object hypothesis descriptions (e.g. image regions,
point cloud clusters) and a set of Annotations: oi = 〈H,A〉, where H = {hi} and A = {ai}.

Every ai ∈ A has a certain data type t(A). For Annotations aj, ak of same type T =
T (aj) = T (ak), we define a similarity function simT : T × T → [0..1]. The result of such a
function sim represents the degree to which the two given clusters appear similar, given the
respective data representation.

Since different Annotation types encode arbitrary information about the cluster, the sim-
ilarity function needs to act as a bridge between raw or processed sensor data, which usually
contain geometrically, visually or semantically meaningful values, and the probabilistic de-
gree of belief to which we consider two clusters to appear similar. For many Annotations,
one can define an actual distance metric, e.g. color hue distance, cylinder length difference,
etc. For all types T where such a distance metric dT is possible, we offer two convenience
functions g and l that are designed to transform the co-domain of dT to be in the range
[0..1]:

g(x) = e−
(

x

2σ

)2

, (1)

l(x) = 2/(2− (1 + exp(−x))), (2)

where g is a zero-mean Gaussian function normalized to have a maximum of 1 at
x = µ = 0, and l is a function that decays approximately linearly at first and approaches
0 asymptotically. Annotation similarity functions have access to these functions in their
implementation.

We understand g(dT (aj, ak)) and l(dT (aj, ak)) to be a “percentage” of how close the
feature distance is to the optimum at dT (aj, ak) = 0. The variance σ2 needs to be estimated
for each Annotation type.

For some, this variance can be easily justified, e.g. the variance of the differences in
position of two cluster observations taken from the same objects, but from different points
of view, is expected to be in the same order of magnitude as the localization covariance of
the robot itself and the sensor noise. This is to say that any error in localization directly
affects a cluster position. However, for other feature spaces, e.g. color hue, this variance is
not strictly meaningful, and must be adjusted as a user parameter or learned in order to
account for the special environment properties, such as lighting conditions, or desired color
sensitivity.

There are also annotators, which wrap around existing perception frameworks, namely
for BLORT, Moped and Linemod.
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4.3 Classification Framework

Another open source component we integrated is the classification framework described in
[8], in the form of the FeatureClassificationAnnotator capable of examining all object
hypotheses that have a certain PclFeatureAnnotation. It can be parametrized (e.g. to
process all clusters with VFH features) and creates a ClassificationAnnotation. As of
now, this annotator provides object-level classification using global point cloud features, but
the framework supports any type of feature (and bag-of-features), so we will use it for local
feature classification as well.

The ClassificationAnnotation type specifies the employed feature and classifier and
the resulting label, in addition to a list of class confidences and/or class accuracies
(〈label, probability〉 pairs) that classifiers can report, and are useful for ensemble learning
[8, 23].

Note that this annotator can be used to process past data, which is interesting for time
consuming operations like post-processing large amounts of data collected over extended
periods to complete models for the universe of objects present, or to create and test classifiers
and ensemble of experts methods.

4.4 WWW Knowledge Sources

To obtain the necessary “common sense” knowledge needed for performing complex tasks,
using rich information from online sources is a promising approach [34]. There are already
huge databases online that hold robotic perception relevant information, like the Trimble
(Google) 3D Warehouse, that can be used as training data for detecting similar objects in
real sensor data acquired by the robot [29], and even enhanced by real, environment specific
data using domain adaptation [35]. Such links to online structured object descriptions,
knowledge bases and web stores allows the creation of more complete object descriptions and
to reason on more than what is visible (backsides, storage temperature, weight, etc.) [36].
By combining perception and knowledge reasoning to improve knowledge gathered by the
robotic agent, it is possible to treat perception as an integrated capability of the autonomous
agent, capable of answering complex queries about its perceived environment [1].

In [36], we report on the acquisition of highly structured product data bases including
images, textual descriptions and information pertaining to e.g. perishability and ingredients
by preprocessing web sites of online retailers such as e.g. GermanDeli.com. This information
is parsed and stored offline in a database for ready access by any annotator. We train
appearance (SIFT) features from the product images for image based recognition of objects,
and can perform textual searches for product descriptions mentioning e.g. “Nestlé”, “milk”
or “Kellog’s”, after corresponding logo/brand results from the Goggles annotator.

5 Tracking/Entity Resolution

We want to be able to know where things are. And where they were. And on top of that,
we also want a reconstruction and object description and like to know what data we have
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collected about them in the past. In order to achieve this we make use of tracking algorithms
and a for more challenging situations a method for entity resolution, as it will be detailed in
the .

Currently, the following, independent tracking systems are in place: In its simplest form, a
position based tracker attempts to relate current observations of objects to past observations,
ignoring appearance. 3D appearance is used in a shape based tracker in the form of VFH
features, and image appearance in a tracker based on color histograms. These components
assign tracker-local IDs to clusters and share a common Annotation type, TrackingAn-
notation, which expresses the tracker’s belief about the cluster trajectory and identity. A
separate tracking arbiter uses these annotations in a voting scheme to attempt to find an
explanation consistent with all the evidence.

These can deal with most frame-to-frame changes of static and moderately dynamic
scenes. However, there are situations in which these tracking methods are too simple in
nature and thus contradict each other. In these cases, we employ a more time-consuming
inference step similar to [37] based on Markov Logic Networks (MLNs). This method can
make use of arbitrary similarity metrics computed between observations to compute a prob-
ability distribution of which current clusters are the same as which previous clusters, while
being able to deal with hard cases such as indiscernible objects (e.g. 12 equal cups) or partial
visibility of the scene. It also maintains a belief of which previous observations of objects
could still be valid, even if they are currently out of sight. Using statistical relational mod-
els, the system can consider all the observations and annotations simultaneously, obtaining
a globally consistent posterior distribution over the associations.

In [37], we presented an MLN model we used to solve the problem of object identity
resolution. The model was based on a notion of objects and clusters, and modeled most
predicates directly or indirectly involving a predicate is. This predicate encodes the assign-
ments of clusters to objects, and requires a database of objects, or put differently, an a priori
known universe of objects.

For the scenario presented in this work, we remodeled the MLN in order to eliminate
this limitation and be able to tackle the problem of object identity resolution even without a
known universe of objects. This means that predicates that were modeled around is needed
to be changed to rely on similarity measures only in order to estimate a probability of two
clusters being the same object. In our framework these similarity measures are obtained
using the similarity annotator described in Section 4.2.

Table 1 shows the concrete MLN model we use to solve the problem of object identity
resolution. As entity types, the model considers object hypotheses pertaining to objects
placed in a scene, as well as abstract entities representing explanations for pairs of object
observations taken at different points in time. As such, we implicitly mode the time domain
in a heavily discretized way, as we differentiate only between the most recent point in time
(at which all entities n ∈ newCluster were observed) and points in time that preceded it
(these past observations are all entities o ∈ oldCluster).

As a scene containing new object observations arrives in our Annotator, we interpret the
scene to populate the domain newCluster and create the evidence predicates (marked “e” in
Table 1): similar, proximity and outOfView. We then apply the model to update our beliefs
which we extract by analyzing the query predicates (marked “q”): is, appear, disappear and
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e/q predicate declarations domain declarations

e similar(oldCluster, newCluster) oldCluster = {O1, O2,. . . }
e proximity(oldCluster, newCluster) newCluster = {N1, N2,. . . }
e outOfView(oldCluster)
q is(oldCluster, newCluster, explanations!) explanations = {move, stay , newview , not }
q disappear(oldCluster)
q appear(newCluster)
q hidden(oldCluster)

i Fi

1 (is(a, c, e1) ∧ is(b, c, e2) ∧ ¬ (e1=not) ∧ ¬ (e2=not)) → a=b.
2 (is(c, a, e1) ∧ is(c, b, e2) ∧ ¬ (e1=not) ∧ ¬ (e2=not)) → a=b.
3 is(o, n, stay) ↔ (similar(o, n) ∧ proximity(o, n)).
4 is(o, n, move) ↔ (similar(o, n) ∧ ¬ proximity(o, n)).
5 is(o, n, newview) ↔ (¬ similar(o, n) ∧ proximity(o, n)).
6 outOfView(o) → ¬ (∃ n (is(o, n, stay) ∨ is(o, n, newview))) ∧ (is(o, n, not) ∨ is(o, n, move)).
7 appear(n) ↔ ¬ (∃ o (is(o, n, stay) ∨ is(o, n, move) ∨ is(o, n, newview))).
8 disappear(o) ↔ ¬ (∃ n (is(o, n, stay) ∨ is(o, n, move) ∨ is(o, n, newview))) ∧ ¬ outOfView(o).
9 hidden(o) ↔ ¬ (∃ n (is(o, n, stay) ∨ is(o, n, move) ∨ is(o, n, newview))) ∧ outOfView(o).

Table 1: Markov logic network for object identity resolution. Free variables in formulas are
implicitly assumed to be universally quantified. Formulas 1 and 2 are hard formulas and
essentially have an infinitely large weight, which, in practice, is substituted by a sufficiently
large real number. The domain explanations is fixed across all instantiations of the model,
which is why we declare it explicitly. The domains oldCluster and newCluster change for
every instantiation, depending on the number of objects observed in a scene. The predicate
declarations indicate the domains to which the predicates are applicable. The predicate
declaration for is(oldCluster,newCluster,explanations!) contains an argument suffixed by an
exclamation mark, which means this predicate is declared as functional, i.e. for each pair of
old and new clusters, there must be exactly one explanation for which the predicate is to
hold in any possible world.
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hidden.
Markov logic networks are particularly well-suited for the representation of such a model,

as they allow us to specify the various hard constraints that any valid entity-observation
association must satisfy in first-order logic. At the same time, probabilistic rules (which
either increase or decrease the likelihood of associations) can be expressed as soft constraints.
Any beliefs computed by the model are guaranteed to be probabilistically sound and globally
consistent with respect to the constraints that were specified.

6 Information Fusion, Storage and Reuse

In the previous sections, we described how the raw sensory input data is being transformed
into semantically more meaningful information by application of annotators. These anno-
tators can be thought of feature generators, transforming low-level observations into more
abstract, symbolic representations. As an example, consider the PclFeatureAnnotator, trans-
forming a 3D point cloud into a symbolic descriptor such as Box or Round, or a ColorAn-
notator yielding a symbolic description of what colors can be found in the object under
consideration, such as Red and Blue. However, since most of the annotators producing those
object hypotheses are applied independently of each other, their outputs are not guaranteed
to be globaly consistent and they typically do not take into account object interactions in
the current scene. Thus, for a perception system like RoboSherlock, the ultimate goal is
to come up with a final ensemble decision on object identities/hypotheses.

To this end, we apply state-of-the-art methods from the field of statistical relational
learning (SRL), a subfield of the machine learning discipline that has emerged and gained a
lot of attraction in the recent couple of years. In those SRL models, we can capture complex
object interactions, represent and reason about object properties, their attributes and the
relations that hold between them. Most notably, the ultimate strength of SRL models is
their capability of allowing for reasoning about all observations simultaneously, taking into
account interactions between objects and thus achieving a posterior belief that is guaranteed
to be globally consistent. Maintaining a joint probability distribution over observations,
their class labels and the robot’s current context or belief state has several advantages over
a discriminative model that seeks to just discern a set of objects given the observations
and gives raise to numerous possibilities of how information from different sources can be
combined in order to improve the performance of the overall system. From a probabilistic
point of view, inference in the former can formulated as solving for

argmax
l

P (object(o, l) | shape(o,Box), . . .) (3)

where object is the predicate assigning a class label to some observation o and shape etc. is
the set of observations we obtained from the sensory modules. Inference in a joint probability
distribution, however, can not only be employed to reason about what kinds of objects are
present in the current scene, but also, e.g. to compute what observations can be expected in
the current or even in variations of the current scene:

P (object(o, l), shape(o,Box), . . .) , (4)
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which can be used to formulate arbitrary queries. As an example, consider a breakfast scene
where a box of cereals is located on the table, but the robots current view angle does not
allow a texture annotator to extract informative features. A distribution of the form of (4)
can be used in order obtain a belief about what additional features from e.g. Google goggles
can be expected if the object under consideration was actually a box of cereals:

argmaxl P (goggles logo(o, l) | shape(o,Box), object(o,Cereals, scene(Breakfast)))

= “Dr Oetker”

In a next step, the goggles annotator can be specifically applied to the scene in order to
check if the “Dr Oetker” brand logo can actually be recognized on the box. We argue that
the opportunities offered by a joint distribution over the system’s belief state go far beyond
what can be done with traditional discriminative approaches for object identification.

In particular, we employ Markov Logic Networks (MLN) [38] a powerful knowledge rep-
resentation formalism combining the expressive power of First-Order Logic (FOL) and the
ability to deal with uncertainty of probabilistic graphical models. As opposed to most tra-
ditional machine learning approaches, learning and reasoning in MLNs is not restricted to
a feature vector of fixed length, but is rather performed on whole databases of entities and
relations. More formally, an MLN consists of a set of formulas F in First-Order Logic and
a real-valued weight wi attached to each of those formulas Fi. The probability distribution
over the set of possible worlds X represented by the MLN is defined as follows:

P (X = x) =
1

Z
exp

(

∑

i

wini(x)

)

, (5)

where x is a complete truth assignment to all predicate groundings X (i.e. one possible
world), ni(x) is the number of true groundings of formula Fi in x, and Z is normalization
constant.

From a logical point of view, the outputs of the feature annotators in RoboSherlock

can be regarded as tables in a relational database and thus naturally correspond to predicates
in FOL, and the segmented clusters represent the domain of discourse of entities we wish
apply probabilistic, logical reasoning to. Furthermore, we can think of the final class label,
i.e. the object identity we wish to predict, as an additional predicate. As an example,
consider a scene of two objects c1 and c2, where the ensemble of experts have identified c1
being a yellow-ish box with a “Dr Oetker” brand logo on it, and c2 being a round, blue thing.
We can capture such a scene in a relational database as follows:
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shape(c1,Box)

color(c1,Yellow)

goggles logo(c1, “Dr Oetker”)

color(c2,Blue)

shape(c2,Round)

object type(c1,Vitalis Cereals)

object type(c2,Bowl),

where we have manually added information about object classes in the object type predi-
cate. In MLNs, it is straight-forward to create a model putting object attributes into relation
with their class labels, since they provide a simple, declarative template language for gener-
ating probabilistic models. If we assume, for instance, that we can conclude from the shape
of an object to its type, a set of weighted formulas such as

w1 = log(0.66) ∀x. shape(x,Round) ∧ object type(x,Bowl)

w2 = log(0.33) ∀x. shape(x,Box) ∧ object type(x,Bowl)

can be added to the model, which naturally represent the rules “everything is a round
bowl” and “everything is a box-shaped bowl”. In this work, we pick up the convention that
constant symbols in FOL are written uppercase whereas variables are written lowercase. Of
course, the above rules do not hold for most of the entities we encounter in the real world
and, in fact, they can be considered as mutually exclusive. However, according to (5), the
probability distribution defined by this MLN indicates that any world in which we encounter
a round bowl is twice as likely as a world in which we find a box-shaped bowl. Following this
manner, we add such abstract, coarse “rules of thumb” modeling connections between the
ensemble experts and the final ensemble decision. The weight parameters of the resulting
MLN can be learned in a supervised learning fashion. In the next chapter, we will describe
the model we are using in RoboSherlock in more detail.

We think that applying a statistical relational model such as Markov Logic Networks is
superior to other approaches for coming to a final ensemble decision for several reasons, a
couple of which shall be depicted in the following:

1. Simultaneous classification of an arbitrary number of objects. As mentioned
above, MLNs are able to simultaneously take into account any arbitrary but finite
number of objects for classification. This an important feature for a perception system
like RoboSherlock, since it captures interaction between objects in a scene. If a
classification system is aware of the probability of jointly encountering two objects of
particular types, this can tremendously boost the classification accuracy. Encountering
milk and cornflakes together on a table, for instance, is much more likely than finding
cornflakes and ketchup.
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2. Confidence-rated output. Compensation for annotator noise

3. Full joint probability/generative models. If there still is uncertainty about an
object’s identity after the classification process, the MLN’s joint probability distribu-
tion over input data can be exploited to collect additional information. If the system,
for instance, has a rather weak belief that some object is a box of cereals, the joint
probability over feature inputs might suggest that there should be some logo of a ce-
real brand on it. In a second trial, the system could then run the goggles annotator
(maybe on retaken images of the box) in order to explicitly search for the logo and
hence actively collecting stronger evidence.

4. Ease of extension. integration of additional context information, which do not come
from the perceptual system, such as task information from an upper knowledge base
can be easily integrated into the MLN. Looking onto a breakfast table, it much more
likely to encounter cereals, milk and a bowl than looking into a drawer.

An important step besides object hypothesis generation and annotation, which structure
and enrich raw perceptual data, is to aggregate and filter the information contained in these
annotations. This leads to better decisions about object identity, pose and class and can
also provide consensus based confidence estimates. The benefit of combining different cues
for the object perception task was already shown in [8], and the system presented there is
integrated into the architecture described here.

As mentioned before, all UIMA types can automatically be stored in a MongoDB database,
and we have implemented a CAS Consumer that takes every Scene, its Clusters and
their Annotations and inserts it as a timestamped, hierarchically structured observation (cf.
Fig. 4). This serves multiple purposes: (1) storage as a memory mechanism for later evalua-
tion, including problem formulations such as modeling object life cycles or common storage
locations, (2) a knowledge source for feedback into the next iteration of scene processing, and
(3) a backend for a convenient visualization web page. We plan to extend the functionality
of this web page in the future with mechanisms to provide manual ground truth data, data
labeling and annotation corrections. This is invaluable for training machine learning systems
semi-automatically through the help of the tracking mechanisms, or as a general debugging
tool.

Reconstructed information (completed, registered CAD models, object position life cycles
etc.) can be reused as priors in future processing as well. Additionally, task adaptation
requires to limit detectors to the ones that provide relevant information for the task at
hand [39], and take into account e.g. intended object use (pouring, stowage, disposal, etc.)
for selecting the right approach. Similarly, (task, domain, location) context can shape object
database selection, generate relevant search regions, and select segmentation strategy, etc.
as in [40].

The orchestration of the analysis process by flow controllers can be guided by annotations
made in previous steps of the process. It can thus adjust the flow based on the task query
but also as a response to environmental conditions such as object arrangement or lighting.
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n Source: GermanDeli.com

Product Name: Hela Scharfer Curry Gewürz Ketchup 400ml

(Hot Curry Sauce 13.5oz) 

Description:

Hela Gourmet Sauces are unique combinations of all-natural

spices and seasonings. This versatile sauce adds a wonderful 

zesty taste to a wide variety of dishes including chicken, steak, 

pork and shrimp.... or even a plain hamburger. We use this curry 

ketchup (catsup) for our Curry Wurst! Truly an all-purpose 

gourmet sauce. Store on shelf and refrigerate after opening

Ingredients:

Tomato juice, sugar, dextrose, salt, curry, pepper, paprika, chilies, 

cloves, wine vinegar, modified starch, acidifying agent: citric 

acid, thickening agent: (E 412, E 413), herbs, ph-regulator: 

sodium lactate, flavor enhancer: E 621 monosodium glutamate

Brand: Hela

Country of Origin: Germany

Item #: 4027400168280

Rating: 5 stars 

Weight/Size: 13.5oz (400ml)

Price: $5.79

Perishability: 1 (non perishable)

Figure 4: Results of RoboSherlock for an observation of a ketchup bottle.

7 Object Perception Type System

The type system is a fundamental component in our system and in UIM systems in general,
since it allows independent development of components while enabling very heterogeneous
data representation. It consists of the following types:

• basic (raw) data types

• object hypotheses

• object centric annotations

To be able to represent all information sent via ROS topics in our system, we provide
an automatic converter that translates all available ROS message types into UIMA types.
This includes core functionality such as transformation/kinematic chains (tf ) or sensor data
such as camera images and point clouds. Likewise, all PCL point types from are supported
out of the box, as well as all OpenCV image types. For database storage, we opted to use
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MongoDB, and created automatic conversion mechanism so all current and future UIMA
types are available for “serialization” to Mongo objects.

The type system for storing object hypotheses consists of ClusterPoints, ImageROI,
TFLinkSphereROI, TFLinkBBoxROI where all are subtypes of ObjectHypothesis,
and can be used to describe a region of interest in either point cloud data, image data or in
any defined tf coordinate system (cf. Sec. 7).

Object centric annotations are the types that store results from the different experts
that analyze object hypotheses. We introduce some of the more important types that are
used more frequently: LocationAnnotation is a supertype to define locations in 3D, in an
occupancy, hierarchical or semantic map; PclFeatureAnnotation can hold any feature rep-
resentation available in PCL; PclSACAnnotation can hold the model of a previously fitted
SAC model GogglesAnnotation models the structure of responses from Google Goggles;
ClassificationAnnotation is a flexible representation of classification results (cf. Sec. 4.3);
TrackingAnnotation (cf. Sec. 5) holds information concerning frame-to-frame or scene-
to-scene associations between object observations; ProductAnnotation is a particularly
semantic piece of evidence, allowing the representation of ingredient lists, prices, or concepts
such as perishability or heat sensitivity retrieved from e.g. online web stores; BarcodeAn-
notation can store bar codes of various types for matching with product registries;

A Cluster is defined as a region (one or more ObjectHypothesis representations, e.g.
an image region or a point cluster) linked with various Annotations. The Scene type
contains a hierarchy of Clusters, the robot state and a Timestamp and as such represents
a snapshot of a spatial arrangement of objects at a given time.

8 Experiments and Results

Since the contributions are neither individual algorithms nor a monolithic system, but a
framework, and since it covers a considerably wider scope than previous work, it is hard to
quantitatively assess the quality of the proposed approach. We therefore chose to evaluate
key parts of the framework separately. We start by showing an illustrative example of
an annotated cluster, followed by a demonstration of a key aspect of the given framework:
richness of object information that the robot can generate autonomously with our exemplary
application. We show, the power of the entity resolution in subsection 8.3, ending our
evaluation with a preliminary fusion of the results from several experts in subsection 8.4.

8.1 Illustrative Example

Let us demonstrate the principles underlying RoboSherlock using an illustrative example.
The robot is looking at the kitchen counter and acquiring an RGB-D scan of the scene with
its Kinect sensor (cf. Fig. 1)

Fig. 5 shows an example of a point cluster of a cereal carton. A feature annotator creates
a PclFeatureAnnotation, which is used by the classification framework to create a “box”
ClassificationAnnotation with confidence 88.9%.
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GogglesAnnotation: Product
Vitalis Crunchy Choc, $8.99

Pcl Feature Annotator
VFH

ClassificationAnnotation:
Shape: "box" 88.9%

Classification Framework
VFH

Google Goggles
Annotator

GogglesAnnotation: Logo
"Dr Oetker"

Figure 5: Annotators (blue) take an artifact, in this case a cluster of a cereal box, from the
CAS. They create Annotations (green), which reference the artifact and can be (re-)used in
different Annotators. The example shows the VFH [41]feature vector, a shape classification,
as well as two Goggles results.

On the left hand side, the Goggles annotator uses the corresponding image region from
the camera, uploading it for analysis by Google Goggles (cf. Sec. 4.2). The resulting Gog-
glesAnnotation contains interesting information such as a brand logo and a product link.

Combining these annotations makes the construction of powerful mechanisms possible:
RoboSherlock can extend these data-driven object descriptions with descriptions of object
properties, such as volume, more specific names, prices, ingredients, product images, or even
online search queries for additional resource retrieval, e.g.: i) text recognition (OCR) on a
bottle label can be linked to ingredients list, container volume or price from an online store
(c.f. Sec 4.2);ii) bar codes can be used in publicly available product registries; iii) the concept
of e.g. perishability of milk can be grounded in the observation of a specific brand of milk
through the use of ontologies (e.g. OWL-DL [36]).

8.2 Richness of Annotation

As mentioned in the introduction of this Section we resort to demonstrate the key aspect of
the given framework: richness of object information.

To give a specific example, Fig. 4 depicts the contents of different Annotations that
were obtained for the ketchup bottle in a single snapshot: A PclFeatureAnnotation of
type VFH, a GogglesAnnotation with two results, and a ProductAnnotation with a
positive database match from GermanDeli.com. Some annotations, e.g. ColorHistogram
and TrackingAnnotation have been dropped for simplicity.

The Goggles results are of two types: Similar Image, along with the name “Hela Curry
Ketchup”, and three URLs, pointing to a Google search page, a high resolution image, and
the page on which the image has been found. The second hit is OCR Text detection, “Curry”,
with links offering e.g. a translation. It is evident that these two strings by themselves are
very informative and could be used in a variety of contexts, e.g. matching a user voice
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Figure 6: Histograms of object annotations

command to “pass the ketchup” or to narrow down a list of matches of similar products
based on flavor.

Based on the ImageROI of the cluster, a match has been found in the database of Ger-
manDeli products, and the resulting ProductAnnotation contains a list of key-value pairs,
some generic (e.g. source and product name), some specific to the source (e.g. ingredients
and perishability). From this, it can be deduced that e.g. the bottle is not stored in the
fridge, and it gives rise to the idea of the robot ordering a new bottle if so instructed. A
robot deployed in a clinic might point out the sugar content before handing it to a diabetic
patient.

In order to demonstrate the rich information gathering capabilities of RoboSherlock,
we set up 103 scenes (like the ones in Fig. 7) in our lab kitchen environment, on top of two
counters, containing 587 object observations. Note that we are not trying to evaluate our
object hypotheses generations, thus objects were arranged in the scenes at a distance large
enough, without occlusions, that they are easily separable using a basic 3D segmentation
and Euclidean clustering.

We used textured (e.g. cereal) and untextured (e.g. bowl) objects, ones with protruding
3D shapes and ones without (e.g. cutlery which in 2D data blended into the table plane).
Combining hypotheses from multiple complementary segmentation methods (3D table top
segmentation and color segmentation) yields better object clusters than the methods for
themselves, and while we do not get every annotation for each object, we consistently get
several (multi-modal) descriptions for each view of an object. A subset of the set of objects
that have been used for the experiment is shown in Fig. 7.

The range of objects varied from small items such as a bottle cap and cutlery to relatively
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Figure 7: Example scenes and clusters of some of the objects used in the experiments.
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Figure 8: Histograms of flat and 3d objects in the scene

large items, e.g. a pancake maker or cereal containers. Several objects were rather flat (e.g.
a book and a magazine, cutlery), others were three-dimensional (e.g. bottles or boxes), and
there were textured (e.g. food products, drink containers) as well as non-textured objects
(e.g. plates and cups). All in all, except for transparent objects, we attempted to create a
comprehensive set of objects that occur in regular household environments.

Figure 9: Histograms of objects found per scene

In Fig. 6 we show, the occurrence of several annotations that resulted during the ex-
periment. Some experts annotate all of the clusters found during execution (e.g. Shape
Classification), while other like the GogglesAnnotation are there only for certain clusters.
Even though the scope of this work not being how we fuse these informations from different
experts but offering a framework where this is made possible, one can easily see how certain
annotations can complement each other: e.g. in the case of an erroneous shape classification
we can rely on annotations that come from web sources or other experts in order to create
a more accurate model of the object at hand.

Histograms showing the distribution of objects over the test data are shown in Fig. 8
and 9. Although it is a very simplistic example the aforementioned histograms show how
the two experts complement each other and come up with better object hypotheses. Having
better segmentation algorithms (e.g. ones that deal with cluttered scenes) would furthermore
improve the capabilities of the system.

URDF- PointCloud- SmallObject- GenericFeature- Cluster- ClusterGoggles- TOTAL
RegionFilter ClusterExtractor Annotator FromNormalsEstimator Tracker Annotator

Mean 48.5 1513.8 741.4 265.6 101.4 4945.7 7616.5
STD 6.0 850.3 166.0 91.5 36.7 1446.0 2023.9

Table 2: Average and standard deviation of the recorded runtimes (in milliseconds) for the
different processing steps.
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The total processing time and the ones for the individual modules is shown in Table 2.
The online query made to Google Goggles takes the longest time, but as these are issued
asynchronously it is not so problematic. Extracting clusters from the input frame was the
second slowest step, but it has lots of potential for improvement. Annotating and tracking
the objects was performed quite efficiently, and overall the runtimes were fast enough, if no
immediate GogglesAnnotation is required.

8.3 Entity Resolultion

As described in 5, a tracking mechanism is necessary in order to find corresponding object
hypotheses from different time frames, detect objects that disappeared or reappeared in the
scene or realize that a certain hypotheses is novel. In order to assess the validity, performance
and robustness of our approach, we performed a series of experiments. In order to be able to
illuminate various aspects with statistical significance, we implemented a synthetic test case
that simulated a number of tables where actions were performed to put, remove, and move
objects around, as well as change their appearance to simulate different partial views of an
object. A virtual sensor with limited view frustum was used to generate noisy measurements
of a subset of the objects, which was used to infer the actions that were performed as well
as the the belief state of all objects in the environment.

We used 4 tables of 1 square meter area each and a sensor that is placed at a randomly
changing position in front of any one table that can see up to 1 meter in width. We used a
set of 15 objects of random color.

For each object in the sensor’s view, we generated an observation by adding Gaussian
noise with a standard deviation of σ1 ∈ {0.025, 0.05, 0.075, 0.1} per color channel to the
color vector, and we used the same principle (and the same additive Gaussian noise) in two
dimensions to simulate a measurement for the true position.

The computation of similar and proximity is then performed per pair of old and new
measurements by computing the euclidean distances between them and applying g with a
standard deviation of σ = 0.25:

similar(o, n) = g(c(o)− c(n)) (6)

proximity(o, n) = g(p(o)− p(n)). (7)

We evaluated the success rate of the object identity resolution method depending on
noise level and the problem size (number of objects involved) in the inference step. This
is shown in Figure 10c, where you can see that the cluster association (subfigure a) has a
very high success rate throughout the entire domain of problem sizes, up until the highest
level of noise we evaluated. It is clear that as the number of objects increase, the chance
of mistaking objects for one another rises. The correct explanation for what happened to a
certain object (subfigure b) is more susceptible to noise, and fails faster for larger problem
sizes. This is due to the fact that the various explanations are directly modeled after their
respective combination of evidence predicate configurations.

Surprisingly, our method is not that sensitive to the number of actions that were per-
formed before observing the scene and inferring what happened. In Figure 10, we show the
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(a) Success rate of correct cluster association (mode of is).
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(b) Success rate of correct action explanation (stay, move, newview, appear, hidden, disappear).
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(c) Success rates of inference results over problem size (number of objects involved in inference),
shown for increasing levels of noise (σ1).

same success rates, graphed over the number of actions, and it can be seen that the cluster
association problem is not much affected by performing 5 actions between observations. For
moderate noise levels, even the action explanation can mostly deal with this issue. At high
noise levels, performance begins to drop to the point where only 3 or 4 out of 5 performed
actions were inferred correctly.

Example results for one of the scenarios from the experiment described in Section 8.2
are shown in Fig. 11c. Shown in each sub figure is a visualization of similar and proximity
predicates (left,center) and the inference results showing the mode of the distribution over
is as well as the predicates appear (A), hidden (H) disappear (D). New clusters are shown
on the top, old clusters along the left side. In subfigure a there are two identical plates and
one of them was moved, while in subfigure b one of the objects was replaces with another
one. In both cases the entity resolution system successfully identifies the action that took
place.
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Figure 10: Success rates of inference results of cluster association and action explanation as
a function of the number of actions performed. Errors are plotted separately for different
noise levels.

(a) There are two identical blue plates, one of which has been moved. The association is still
inferred correctly.

A

H D

Similarity Evidence Proximity Evidence Inference Result

(b) The magazine disappeared, the ice tea bottle appeared, the remaining object stayed.

A

H D

Similarity Evidence Proximity Evidence Inference Result

(c) Exemplary results showing various effects of the object identity resolution for a single time step
each
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8.4 Information Fusion

We conducted experiments on a data set of 50 realistic scenes, each comprising about 3-
8 objects. For each scene, we had the class label for each cluster in the scene as well
the context information manually annotated. For the MLN we used for obtaining a final
ensemble decision of experts, we used the following predicates, which correspond to the
annotator outputs in the RoboSherlock system:

• shape(cluster, shape). Determines the shape of a cluster found in the scene. Possible
values for shape are dom(shape) = {Round,Flat,Box}.

• color(cluster, color). Determines the colors found in the RGB image of a cluster. Pos-
sible values for color are dom(color) = {Red,Yellow,Blue,Green,White,Black}.

• goggles Text(cluster, text). Output from the Google goggles text annotator. Can be an
arbitrary string.

• goggles Logo(cluster, company). Output from the Google goggles brand logo annotator.
Returns company names, such as “Dr Oetker” or “Kellogs”.

• goggles(cluster, product)

• goggles Contact(cluster, contact)

Two additional predicates have been used for specifying knowledge about the current context
the perceptual task is conducted in and for assigning a class label to each of the clusters in
the scene at hand:

• scene(scene). Determines the current context in which the perceptual task is being
performed. possible contexts are dom(scene) = {Breakfast,Cooking,Drawer,Fridge}

• object(cluster, object!) Assigns an class label to a cluster. In our experiments, we dis-
tinguished 25 different kinds of objects (see also Table 3). The “!” operator specifies
that this predicates is to be treated as a functional constraint, i.e. for every cluster
c ∈ dom(cluster), there must be true exactly one ground atom.

The following Markov Logic Network has been designed in order to model correlations be-
tween annotator outputs (i.e. the object properties) and the object classes:

w1 ∀c, s, col, obj. shape(c,+s) ∧ color(?c,+col) ∧ object(?c,+obj)

w2 ∀c, comp, obj. goggles Logo(c,+comp) ∧ object(c,+obj)

w3 ∀c, text, obj. goggles Text(c,+text) ∧ object(c,+obj)

w4 ∀c, prod, obj. goggles(c,+prod) ∧ object(c,+obj)

w5 ∀c, contact, obj. goggles Contact(c,+contact) ∧ object(c,+obj)

w6 ∀s, obj. scene(+s) ∧ object(c,+obj)

w7 ∀c1, c2, t1, t2. object(c1,+t1) ∧ object(c2,+t2) ∧ c1 6= c2,
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where the “+” operator specifies that the respective formula will be expanded to one indi-
vidual formula for every value in the respective domain. The weights have been determined
by supervised learning of the manually labeled data using pseudo-log-likelihood learning.
Since learning and inference in MLNs is a computationally expensive task, we had to restrict
our experiments to using only 50% of the scenes we recorded. Table 3 shows the confusion
matrix of a 5-fold cross validation on this data set.
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Coffe pitcher 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
Coffee pitcher 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
Kellogs corn flakes 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Pfanner ice tea 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Pfanner orange juice 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Pringles chips 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2 1 0 0 0
Vitalis cereal 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
bowl 0 0 0 0 1 0 0 1 1 2 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0
coffee 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
cup 1 0 0 0 1 0 0 2 1 3 2 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0
fork 0 0 0 0 1 0 0 0 0 2 1 0 0 0 0 2 0 2 1 0 0 0 0 0 0 0
hot plate 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ja oil 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
ketchup 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 2 0 0 1 0 0 0 0
knife 0 0 0 4 0 0 0 0 0 3 0 0 0 0 3 1 0 0 1 0 0 1 1 0 0 0
milk 0 0 1 0 0 0 0 0 0 2 0 0 0 0 1 4 0 1 1 0 0 0 1 1 0 0
nutella 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
pancake mix 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 2 0 1 0 0 1 0 0 0
plate 0 0 0 0 0 0 0 0 0 1 2 0 0 0 2 0 0 0 5 0 0 5 4 0 0 0
pot 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
salt 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1
spatula 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
spoon 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
sugar 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 1
tea 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
toaster 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

Table 3: Confusion matrix resulting from 5-fold cross validation on 50% of the scenes by
applying the MLN for Information Fusion.

9 Conclusion and Future Work

This paper proposes RoboSherlock, a software framework for implementing perception
systems that can scale towards real-world perception task complexity as defined above.

We know of no other robot perception system aiming at providing perceptual information
about objects of daily use that are as rich as the ones computed by the RoboSherlock

application sketched above. It can provide robots with the evidence required to answer
queries such as: where is X ? where has X been? and what was on the table this morning?
More interesting are queries such as “is there milk on the table?” (mapping of general “milk”
concept to a specific brand) or does X go into the fridge?.
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Yet, these capabilities are only the tip of the iceberg. The UIMA framework offers
sophisticated methods for combining results with confidence. A number of open source
tools exist in the UIMA software libraries enabling extraction and use of knowledge from
the world-wide web. The machine learning infrastructure within the UIMA framework is
particularly sophisticated and promising, impressively demonstrated with the Watson [17]
system winning the jeopardy! challenge. Investigating the intriguing prospect of whether the
impact of these methods on robot perception is equally strong is on our agenda for future
research.
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Inpainting of Missing Values in the Kinect Sensor’s

Depth Maps Based on Background Estimates
M. Stommel, M. Beetz and W. L. Xu

Abstract—Low-cost game controllers such as Microsoft’s
Kinect sensor provide dense, real-time depth measurements of
indoor environments at high framerate. The sensor is based on
the principle of active stereo using structured infrared light.
For surfaces that distract infrared light, no measurements can
be obtained. It is important to replace missing values early
on, to avoid a slow subsequent conditional evaluations or the
propagation of errors into neighbouring regions. To solve this
problem we present an inpainting method that adds missing
values based on background estimates of the unoccluded scene.
It is therefore not necessary to hypothesise missing regions based
on similarity to other image regions. The procedure also avoids a
blurring between foreground and background. By adapting the
method to the specific properties of the Kinect (and comparable)
cameras, we were able to keep the complexity of the algorithm
low, so high speed can be achieved.

Index Terms—Kinect, missing values, real-time, stereo, depth
map, background subtraction.

I. INTRODUCTION

RECENT advances in sensors and computers have inspired

the application of computer systems in increasingly com-

plex tasks and situations, often containing aspects of human-

computer interaction. Optical sensors are attractive for such

scenarios because they allow for a a contactless, non-intrusive

sensing of the environment.

Microsoft’s kinect sensor has probably been the sensor with

the highest influence on the robotics and mechatronics com-

munities in the last three years. Originally proposed as a game

controller, many researchers have explored additional applica-

tions in healthcare [1], robotics [2], [3], video surveillance [4],

or the facilitation of communication [5]. It is primarily the

low price of the device that motivates researchers to explore

the kinect device in applications [4] that have formerly been

solved even by non-optical sensors [6], [7], although alterna-

tive depth sensors with comparable performance exist [8], [9].

A. Principle of Operation of the Kinect Sensor

The kinect sensor can shortly be characterised as a stereo

system consisting of an infrared projector and an infrared

camera at a baseline of 7.5cm. Colour images are provided

by an additional camera. The projector illuminates the scene

by a quasi-random speckle pattern generated by an IR laser

with 830nm wavelength and a set of diffraction gratings.

The pattern is known and used to establish stereo correspon-

dence between projector and camera. The speckle pattern

M. Stommel and W. L. Xu are with the Department of Me-
chanical Engineering, University of Auckland, New Zealand, e-mail:
m.stommel@auckland.ac.nz. M. Beetz is with the Institute for Artificial
Intelligence, University of Bremen, Germany. This work is supported by the
European Community, within the FP7 ICT-287513 SAPHARI project.

resolves most ambiguities found in passive stereo systems,

thus providing dense depth maps even for large homogeneous

surfaces. Specular surfaces like glass windows deflect infrared

light causing missing values in comparatively large areas.

Light absorbing materials such as black cloth can also cause

gaps. In our experiments, we noticed holes produced by the

following objects: the windows, posters behind glass, the

glass front of an oven, a pair of black jeans, a checkerboard

pattern used for camera calibration, computer screens made

of plastic, a glass window in a door, an empty plastic bottle.

Depth discontinuities cause additional gaps because either the

projected or the reflected light is obscured.

Based on an inspection of hardware and system output,

Konolige and Mihelich [10] conjecture that a 9 × 9 or 9 × 7
pixel correlation window in an infrared image downsampled

to 640×480 pixels is used to establish stereo correspondence.

The correlation seems to be measured over 64 [10] or 88 [11]

neighbouring pixels. An unknown sub-pixel interpolation al-

gorithm increases the resolution to 1/8 pixel. The depth is

transformed to metric distance values as output. The image

resolution is typically 640×480 at 30Hz, which is comparable

to a time-of-flight camera. In contrast, a mechanically tiltable

laser scanner has a frame rate in the orders of a magnitude

of 1Hz. The selection of other frame rates and sizes is

primarily limited by the maximum throughput of the USB 2.0
port. The Asus Xtion camera which is built according to the

same reference design by PrimeSense also provides images of

640× 480 pixels size, although in our experiments the actual

resolution was only 320× 240 pixels. The registration of the

infrared camera with the colour camera causes missing values

at the border of the depth map. The vertical and horizontal

field of view is 43◦ × 57◦, which is comparable to a time-of-

flight camera, whereas laser scanners achieve up to 180◦.

B. Accuracy of the Sensor

The biggest influence on the accuracy of the sensor is

noise in the disparity measurements. Since the difference

between two consecutive disparity values corresponds to a

quadratic term with respect to depth, the resolution decreases

quadratically with increasing depth [12]. In most experiments

with the Kinect sensor, noise is assumed to be additive zero-

mean Gaussian [12], [13]. The quantisation steps of the depth

values increase with distance according to the noise properties.

The step width varies between 0.65mm at 50cm distance [14],

7cm at 5m distance [12], and 685mm at 15.7m distance [14].

Different sources report different ranges of operation depend-

ing on the resolution required for a particular application.

In the Kinect for Windows, a hardcoded threshold limits the
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output to 40–300cm. Additional to the error of individual

devices, Boehm [15] find a span of up to 20mm in the errors

measured at distances between 0.7m and 1.2m over multiple

devices from the same series. Qualitatively, devices of different

brand are often regarded as comparable [8]. Interference of

the emitted light pattern with objects from the scene [16]

and complex structures in residual errors [8], [14] limit the

effectiveness of traditional noise filters. Laser scanners are

often chosen as ground truth for Kinect depth measurements

because of their clearly superior accuracy [8], [13].

C. Inpainting of Missing Values

Missing values need to be corrected because continuous

checks for validity impair efficient real-time programming.

Untreated, they tend to spread over the whole image plane

within a few filter applications.

Inpainting methods aim at the reconstruction of damaged

or missing image areas by propagating the surrounding image

structure in the isophotes direction into the gap [17]. Structural

inpainting methods use diffusion filters or global optimisation

to find an intensity function of minimum complexity and error

at the boundary of the gap. Gradient based methods lead to a

good fit with respect to the isophotes, but produce a noticeable

blurring in textured areas and large gaps [17], [18].

Textural inpainting approaches aim at reconstructing non-

smooth image regions. For thin stripe-shaped regions, missing

texture can be learned from the global image statistics and

represented by exponential family distribution [19]. Large gaps

can be inpainted by exemplar-based approaches, where the

image area is filled by one or multiple patches taken from

another image region. Suitable patches can be taken from

images other than the inpainted one [20]. Correspondences

can be found by comparing landmarks and determining a

suitable transformation for the patch [21]. The more influential

approach is however to inpaint image patches with similar

local texture [22]. Like in structural approaches, the inpainted

texture is aligned along the isophotes at the border of a gap.

The identification of matching texture often requires CPU-

intensive block-matching strategies.

Colour image based inpainting methods are not generally

transferable to depth maps [23] because of the lack of texture

and the different roles of foreground and background. Small

gaps can be closed by local operators [9]. In multi-camera

setups, occluded surfaces can be added if visible in another

camera [24], [25]. Because of sensor interference, this is

not possible for the Kinect sensor. A particular difficulty

for inpainting are gaps over depth discontinuities. In order

to accurately determine the outline of the foreground object,

depth has been jointly evaluated with colour [23]. For small

gaps and under the assumption of piece-wise smoothness

and constancy, depth values from the border of the gap can

be propagated to edge detections in the colour image. For

large gaps, these detections are however often ambiguous. For

view synthesis and other situations where the contour cannot

be clearly determined from the colour image, exemplars of

detected background areas with matching depth and colour

structure can be painted in [26]. Such methods are however

computationally costly.

D. Methods for Background Estimation

In order to solve the problem of estimating the correct

contour of foreground objects over large areas of missing

values (as caused e.g. by the window panes), we propose to

use background estimates of the unoccluded scene.

Background estimation is traditionally performed by filter-

ing out transient objects from a video sequence by applying

different kinds of temporal bandpasses [27]. Pixel values are

usually modelled by a single Gaussian [28] or a mixture of

Gaussians [29] (MOG). The method is particularly suited for

relatively controlled scenarios where speed is more important

than accuracy [30], [31]. Despite the different roles of depth

and colour, MOG has also been applied to depth maps with a

certain success [9]. A related fast approach uses a codebook

of background values per pixel [32] thereby decoupling pixels

from using a common filter speed.

Many refinements of the classical methods aim at the

development of the statistical foundation [33]. A kernel density

estimation allows for a more accurate modelling of colour

distributions [34]. New findings in subspace learning and

compressed sensing allow for a training of the background

model from sparse samples [35], [36]. Another direction of

research focusses on new features like highly sensitive local

gradient descriptors [37] or detectors for surface convexity [38]

to detect camouflaged objects.

Since colour does only provide limited geometrical infor-

mation, colour has been fused with depth information. By con-

catenating colour and depth to a 4d-tupel, Gaussian mixtures

can be used [39]. The different roles of depth and colour, and

in particular the noise behaviour of passive stereo result in a

weighting of the algorithms towards colour information [39].

Motivated by the higher robustness of the Kinect sensor,

this study sets out to analyse a primarily depth based method.

A related approach has been proposed by Gordon et al. [40]

but not been applied because of sensor limitations at that time.

The direct accessibility of the relevant information will be used

to simplify and speed up the estimation process. Additional

information about colour and surface normals will be used to

resolve remaining ambiguities.

E. Outline of the Proposed Method

In order to achieve a real-time inpainting of missing values,

we combine a low complexity inpainting method with a depth

based background estimator. Since background estimation

algorithms are used in many mechatronics and robotics appli-

cations, the approach may not neccessarily require additional

computational cost. The algorithm starts with a non-linear

mapping of the depth map to a disparity map in order to

normalise noise. A pyramid based inpainting method provides

a fast guess of a preliminary, dense disparity map. The

disparity map is updated by background estimates as soon

as they are available. The background estimates are updated

based on the disparity map.

In the following, we will first describe the sensor charac-

teristics as they appeared in our experiments. We will then

introduce the basic filters needed in our inpainting algorithm.

After that, we will introduce a mode-maximising background
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estimator. The technique is designed especially for the dense

depth maps as provided by the kinect sensor. Due to the sensor

characteristics of traditional stereo, the method has not been

applicable before. We will then present the inpainting method

and give experimental results.

II. SENSOR CHARACTERISTICS AND BASIC ALGORITHMS

In order to adapt our filters to the data, we repeated some

of the above-mentioned experiments on the noise behaviour of

the kinect sensors. In parts, the practical measurements seem

to deviate strongly from the simulations and experiments [12],

[13] described in the first sections.

A. Normalisation of the Standard Deviation

To validate the quadratic dependency between noise and

depth [12], we recorded 2500 frames of the office scene

shown in Fig. 1a by the Asus Xtion. For each pixel position

that provided valid depth measurement over more than 1250

frames, we computed mean and standard deviation. Figure 1b

shows that the standard deviation non-linearly increases with

depth although less smooth than the ideal result. A high

number of sharp spikes indicates that some depth values have a

considerably higher standard deviation than others. As Fig. 1c

shows, the spikes can not be explained by a lack of data. Since

the exact quadratic curve has been found for measurements of

plane surfaces perpendicular to the optical axis, we conclude

that the more natural scene has a complex influence on the

measurements.

Figure 2a shows the distribution of the depth values along

a fixed scanline for 2000 frames of a scene. The nonlin-

ear increase of the quantisation steps with depth is clearly

visible. The size of the quantisation steps compensates for

the increasing variance at higher depth. Fig. 2b indicates that

for a given pixel position, the depth is approximately normal

distributed around a mean. Deviations from the Gaussian can

be seen as relatively clear side maxima. They might result

from reflections of the infrared signal within the scene.

We used the Matlab nlinfit function to find a good

polynomial approximation of the quantisation levels produced

by the Asus Xtion. The found mapping is

norm disp = a1 − a2 · (a3 · depth
2 + a4 · depth)

−1 (1)

with a1 = 828.6404, a2 = 3.1992·105, a3 = −1.93115·10−9,

and a4 = 0.9352. The mapping transfers depth values back to

the so called normalised disparity obtained as an intermediate

result after the stereo matching [10]. Ideally, the mapping

establishes a constant variance over the range of depth values.

This is an important property for fast thresholding techniques

in real-time programming. Considering the strong effect of the

scene itself on the measurements, a high number of outliers

from the ideal Gaussian distribution must be expected. For

efficient use, the mapping is stored in a look-up table.

B. Pyramid-Based Inpainting

A pyramid-based inpainting method is used to provide

a fast estimate of missing values in the unoccluded scene.

Algorithm 1: Selective 3× 3-median filter

input : d(x, y)// Depth map with gaps

output: d̃(x, y)// Median filtered depth map

for all x, y do
W ={

d(x̃, ỹ) :

∥

∥

∥

∥

(

x̃

ỹ

)

−

(

x

y

)∥

∥

∥

∥

1

≤ 1 ∧ d(x̃, ỹ) 6= �

}

;

if W = ∅ then

d̃(x, y) = �;

else

d̃(x, y) = median W ;

end

end

For reasons of speed, we decided against exemplar based or

diffusion based methods. Instead, we decided for a median

filter because it is very fast, interpolates between the borders of

a gap, but does not blur over edges. It is therefore appropriate

to filter disturbances caused by glass panes and thin areas of

occlusion. Complex interferences with foreground objecs will

be addressed later. In order to filter large gaps without using

large (and therefore slow) filter windows, we combine the local

median filter with an image pyramid.

We build the image pyramid by iteratively smoothing and

subsampling the image. For smoothing, we use a selective

3×3-median filter. The filter considers local windows of 3×3
pixels and picks the median among all valid depth values.

After every smoothing, a selective 50 percent downsampling

is performed. If in the downsampling multiple depth values

are mapped to the same destination coordinate, the median

of the values is computed. The term selective means that

missing values will not be considered in the computation of

the median or the downsampling. The downsampled result is

again smoothed and subsampled if it is wider and higher than

one pixel. The original depth map is considered as the lowest

level of the pyramid. The subsampled depth maps form the

higher levels. For accuracy, Alg. 1 shows the pseudo-code for

the selective median filter.

In order to replace missing values, the pyramid based

inpainting algorithm scans through the base level of the

pyramid and tests for missing depth values. If a missing value

is detected, the coordinate is iteratively mapped to the next

higher pyramid level until a valid result is found. For clarity,

Alg. 2 gives the pseudo-code of the procedure.

The smoothing and downsampling of an image of width w

and height h by the proposed selective filters can be done in

time O(wh) because the filter size is fixed. The number of

pyramid levels is logminw, h. Since each pyramid level has

four times less pixels than the adjacent lower level, the sum of

all pixels in the pyramid is determined by a geometric series

with limit 4wh/3. The pyramid based inpainting requires a

walk through the depth map and in the worst case the ascent

to the top of the pyramid for every pixel. The search and

replacement of missing values therefore has runtime of O(wh)
in the best case and O(wh logminw, h) in the worst case.

From the pseudo-code is becomes clear, that the procedure
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(a) Test image (b) Standard deviation (c) Histogram of the depth values

Fig. 1: Variation of depth values around per pixel means averaged over all pixels of the same depth

(a) Histogram of depth along a scanline (b) Depth histograms on the scanline at columns marked by △ (centred to mean)

Fig. 2: Histograms of depth values along a scanline and at single pixels on the scanline

Fig. 3: Frames 0, 23, 45, 68, and 89 of a video sequence recorded in an indoor environment.

(a) Unprocessed depth map (b) Gradient magnitude (c) Gradient direction

Fig. 4: Depth map with large gaps (taken from the video sequence shown in Fig. 3) and gradient of the inpainted depth map
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Algorithm 2: Pyramid based inpainting of missing values

input : d(x, y)// Depth map with gaps

output: d(x, y)// Depth map without gaps

Create image pyramid pyr(x, y, level) : N3 → N with

top levels;

for all x, y : d(x, y) = � // where � is a gap

do

level = 0;

x̃ = x;

ỹ = y;

while level < top ∧ pyr(x̃, ỹ, level) = ∅ do

level = 1 + level;

x̃ = x̃/2;

ỹ = ỹ/2;

end

d(x, y) = pyr(x̃, ỹ, level);
end

also has small constant factors to the asymptotic run-time.

The method therefore seems lightweight enough for real-time

applications.

C. The Three-Sliding-Bins Estimator

The three-sliding-bins estimator is a little technical trick

we employed to determine the mode of a series of measured

angles. The estimator is a histogram of three equally spaced

bins. Let bi be the position of bin i and hi the number of

values assigned to bin bi. The position of a reference bin b0

is defined as a running average of all values assigned to it.

The other bins are localised at relative spacings of ±2π/3s.

Initially, b0 can be set randomly, and hi = 0. Incoming values

are assigned to the nearest bin thereby increasing the respective

frequency h. If a value is assigned to the reference bin, then the

running average b0 is updated. The other bins are recomputed

so that the relative spacing is maintained. If a value is assigned

to a bin different from the reference bin, then the bins are

not updated. The reference bin b0 usually converges quickly

against the most frequent angle in the series.

III. INPAINTING USING BACKGROUND ESTIMATES

The role of the background estimation is to guide the

inpainting process in areas where a foreground object oc-

cludes a background surface that does not allow for depth

measurements. This prevents a blurring between foreground

and background and resolves ambiguities of combined colour

and depth based inpainting methods in large gaps.

A. Mode Maximisation

Per pixel information is provided by the camera as a 4-tupel

(r, g, b, d) of red, green, blue, and depth. The pyramid based

inpainting method described in Sec. II-B is used to fill holes.

We then apply the non-linear mapping of metric depth values

to the indices of their quantisation level according to Eq. 1.

Based on the observation pt = (rt, gt, bt, dt) of a pixel at

time t, we update the background estimate p̂t = (r̂t, ĝt, b̂t, d̂t)

from the background estimate p̂t−1 of the previous frame t−1
as the running average

(r̂t, ĝt, b̂t, d̂t) = τ(r̂t−1, ĝt−1, b̂t−1, d̂t−1)+(1−τ)(rt, gt, bt, dt)
(2)

if the new depth is greater than the background estimate minus

a hysteresis parameter ζ, i.e. if

dt > d̂t−1 − ζ, (3)

and if the depth at the pixel is currently increasing, i.e. if

dt > dt−1. (4)

Parameter τ ∈ 0..1 is a mixing constant we set to 20%. The

first if-condition (Eq. 3) asserts that we are finding the largest

mode, i.e. that the background estimate is maximally far

away. Threshold ζ can only be used because we already have

converted the depth values back to the normalised disparity ac-

cording to Eq. 1. The second condition (Eq. 4) saves a number

of unnecessary and often wrong updates. If no condition holds,

the background estimate is left unchanged. The hysteresis

parameter must be chosen in a way that the mode of the depth

distribution is greater than d̂− ζ. Otherwise, the running aver-

age would miss the mode and converge to an outlier. As shown

in Sec. II-A, outliers are a frequent phenomenon under realistic

conditions. To prevent that singular outliers move d̂− ζ away

from the mode, an upper limit of d̂t−1 + ζ − 1 is imposed on

the updated estimate. The background estimator may therefore

need multiple frames to adapt to a newly discovered distant

background. The delay is not problematic because it only

occurs the first time (afterwards the background is known).

It would be worse to have an increasing number false pixels

that cannot be corrected over time.

If dt > d̂t−1 − ζ, we also update a one-dimensional

estimate φ̂t of the surface normal of the background. This

adds sensitivity for static, rotated foreground objects to the

method. The direction φt of the surface normal is computed

as direction of the gradient of the depth map

φ = arctan(∂d/∂y, ∂d/∂x). (5)

Figures 4c and 4b show the gradient direction and magnitude.

The estimate φ̂t is the mode of a histogram over φ with

three sliding bins at the angles φ̂ − 2π/3, φ̂, and φ̂ + 2π/3
(cf. Sec. II-C). For every pixel coordinate, a separate histogram

ist stored and updated over all frames. The histogram with

three sliding bins can be seen as a simple and fast approxima-

tion of a Gaussian mixture with three means. The bins other

than the mode are designed to absorb noise and foreground.

Foreground segmentation is done by subtracting the back-

ground estimate from the current input image, resulting in a

foreground weighting

wt = ||pt − p̂t||1 + βmin(|φt − φ̂t|, 2π − |φt − φ̂t|). (6)

Because of its speed, the Manhattan distance is used in

the equation. The min-expression combines clockwise and

counterclockwise distances in angles. The constant β weights

the influence of the surface normal and is set to 360/2π in

our case. A pixel is detected as foreground if wt > η. Over

a number of training videos, the threshold was optimised to

η = 200.
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Algorithm 3: Inpainting using background estimates

Let d̂(x, y) be the depth of the background;

for the video sequence do

record depth map d;

d1 = Alg. 2 applied to d;

apply the mapping of Eq. 1 to d1;

for all x, y : d(x, y) = � do

d(x, y) = max(d1(x, y), d̂(x, y));
end

compute the gradient ∇d;

update d̂ from d and ∇d using the algorithm outlined

in Sec. III-A;

end

B. Inpainting Using Background Estimates

The background estimate of the depth map (Sec. III-A)

is combined with the pyramid based inpainting method

(Sec. II-B) by a maximum operation. Algorithm 3 gives the

detailed sequence of the proposed sub-procedures. The method

avoid overly high depth values because of the median filter in

the pyramid based method. Too small values are avoided by

the maximum principle. Outliers do not permanently damage

the filter result.

The non-linear mapping can be done in linear time depend-

ing on the number of pixels by using a lookup table. The

computation of the gradient is linear, too. The background

estimator is a point operator that loops over all pixels. For

every pixel, only running averages and conditional statements

are executed. This can be done in constant time per pixel. The

time complexity of the background estimator is thus linear in

the number of pixels. All intermediate results can be stored in

a vector of fixed size per pixel. No dynamically growing data

structures are needed. The inpainting method therefore has a

linear space complexity with respect to the number of pixels.

IV. EXPERIMENTAL RESULTS

To test the background estimator, we recorded a video

sequence using a Microsoft Kinect sensor. The recorded scene

is difficult in several ways. First, the windows and the big

aluminium panel in the corner of the room distract the infrared

light, so the depth values must be guessed in large parts of the

image. Significant brightness changes are caused by people

occluding the specular area of the floor. The movements of

the people require a quick response of the filter. With up

to 7.5m, the depth of the scene exceeds typical applications

of the Kinect by a factor of two. This requires a robust

noise handling. For comparison, we applied the GMG and

MOG2 algorithms and parameterisations from the well known

OpenCV library both to the colour image and - as proposed

by Han et al. [9] - to the depth map. For evaluation, we

computed the pixel-wise precision, recall, accuracy, and f-

measure against a manually annotated groundtruth.

Figure 5 shows the results. GMG is left out because it

did not work on the depth map. We obtained clearly the

best results for the proposed method. The purely colour-based

methods often mistook furniture for foreground. MOG2 on

the depth map produces qualitatively similar results to our

method. MOG2 is however less accurate and produces more

false positives.

Figure 6 shows the advantage of inpainting using back-

ground estimates for a practical example. The original depth

map for the example can be seen in Fig. 4a. The video

sequence suffers from large areas of missing values at the

windows and the glass front of the oven. Other problematic

areas are the depth discontinuity at the kitchen unit on the

left as well as several smaller spots scattered over the scene.

As Fig. shows, the pyramid based method is able to correct

most errors satisfactorily. However, the largest area of missing

values, i.e. the window area, is spuriously assigned to the

person in the foreground. As a consequence, a subsequent

filter would not be able to detect the correct outline of the

person. Using background estimates for inpainting resulted in

the depth map shown in Fig. . The change in colour stems from

the non-linear mapping. The window area has been assigned

correctly to the background. As a consequence the contour

of the person in the foreground becomes clear and can be

retrieved by subsequent image analysis.

As an alternative to the median filtering in the pyramid

based preliminary inpainting, we also tested a variant using

a binomial filter. The method works exactly as the proposed

method except that in the selective filter and the selective

downsampling a binomial filter is used instead of a median

filter. The method has minimal advantages in speed. As

apparent from Fig. , the outcome is similar to the result of the

median filter. Generally, the median filter has the advantage

that it does not blend depth values over depth discontinuities.

However, there are only few situations where one filter clearly

outperforms another.

Secondly, we tested a bilinear diffusion of the depth values

(Fig. 6a). In the filter chain, the diffusion filter was used instead

of the pyramid based ones. The filter is computationally

extremely slim because it only continues the depth values from

one side of the gap to the inside by averaging with existing

values from the lower left corner. The filter results however

suffer from stripe like structures, ramps, and discontinuities.

A slight advantage in the avoidance of contouring effects is

balanced by the noticeable higher robustness of the pyramid

based median filter. In summary, the results do not encourage

to replace the pyramid based median filter by another filter

of comparable complexity. We also do not expect qualitative

improvements for the use of structural inpainting methods

because many shortcomings in the preliminary inpainting are

already corrected by using the background estimate.

A partly open question is if the proposed method is appli-

cable to the depth maps of time-of-flight sensors. They are an-

nounced to be used in a new series of Kinect cameras. Because

of the fundamentally different measurement procedure, it will

not be appropriate to discretise the depth values according to

the non-linear functions outlined in the introduction and our

measurements. Instead, the accuracy of time-of-flight sensors

depends strongly on the radial distance from the optical axis.

Because of its high noise tolerance, the proposed method

might be transferable with small modifications.
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Input frame Annotation GMG (rgb) MOG2 (depth) MOG2 (rgb) Our method

Precision 0.52 0.58 0.46 0.80

Recall 0.91 0.84 0.94 0.75

Accuracy 0.83 0.87 0.80 0.93

F-Measure 0.63 0.68 0.60 0.77

Fig. 5: Test results

(a) Bidirectional diffusion (b) Pyramid based inpainting using a binomial filter

(c) Pyramid based inpainting using a median filter (d) Inpainting using background estimates

Fig. 6: Comparison of different inpainting methods based on local filtering
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V. CONCLUSION

In this study, we investigated a method for the inpainting

of missing values in the depth maps obtained from Kinect

and related sensors. By using background estimates of the

unoccluded scene, large gaps could be inpainted without blur-

ring between foreground and background. The high number

of outliers found in practical measurements is handled in real-

time by robust statistics, a limited Gaussian model, and a

sliding bin estimator. The method is shown to have constant

time and space complexity per pixel. Experiments on video

data including complex movements of foreground objects and

large areas of missing values demonstrate the effectiveness

of the method, also in comparison to other methods. The

experiments support a primarily depth-based procedure in

background estimation. The directness of the approach allows

for fast computations at lower complexity compared to colour-

based approaches.
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Model-Free Detection, Encoding, Retrieval and

Visualisation of Human Poses from Kinect Data
M. Stommel, M. Beetz and W. L. Xu

Abstract—The recognition of humans in Kinect camera data
is a crucial problem in many mechatronics applications with
human-computer interaction. In order to improve the limited
scope of many model-based methods, we propose a spatio-
temporal segmentation of keypoints provided by a skeletonisation
of the depth contours. A vector-shaped pose descriptor allows
for the retrieval of similar poses and the combination with many
machine learning libraries. A visualisation method based on the
Hilbert curve provides valuable insight in the detected poses.

Index Terms—Kinect, real-time, human body tracking, pose
estimation.

I. INTRODUCTION

FOR many mechatronics applications it is fundamentally

important to detect the human body from video data

and estimate its pose. The automatic recognition of human

poses allows for a technical system to assist humans in

complex situations and cooperate with them in a meaningful

and appropriate way. This could lead to what has been termed

as human oriented machinery by Schweitzer [1]. Present

examples of mechatronic systems that include the recognition

of persons are patient monitoring and evaluation [2], [3], [4],

man-machine interfaces [5], [6], [7], a robotic room [8], and

rehabilitation systems [9].

The key to such flexible systems is situation awareness with

respect to people that are present in a given scene. Situation

awareness, as it is understood in this study, comprises the

1) detection of the people present in a scene,

2) extraction of the poses,

3) encoding of a pose by a feature vector,

4) ability to compare feature vectors to each other,

5) mapping of proximate poses to proximate feature encod-

ings,

6) and ability to visualise the vector space.

The first to steps provide the necessary input data for the

system. The level of detail at which poses are extracted

is naturally application dependent. This study aims at the

extraction of torso, head, and limb positions. The reason is

that this is the level of detail provided by the current real-time

depth sensors, and in particular Microsoft’s Kinect sensor [10].

The recognition of smaller body parts like e.g. the hands

requires the fusion of different sensor modalities [11] or close-

up recordings [12], possibly using modified hardware [13].
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The encoding of the pose can be a simplified version of the

extracted pose data. The pose should be encoded in a way that

facilitates later steps. The encoding does not necessarily need

to represent all extracted information. It also does not need

to be illustrative or related to a kinematic model. Instead,

it is important that the encoding preserves pose similarities

and that it allows for mathematically convenient distance mea-

surements. The preservation of pose similarities is important

because it allows for the comparison of unknown poses to

known poses and hence the classification of unknown poses.

However, small errors can be tolerated. The preservation may

for example be valid locally only. Modern machine learning

methods like support vector machines are also able to map

disconnected regions of a feature space to a common class

label. A representation in the form of a vector allows for an

easy integration with existing machine learning tools.

The possibility to visualise the feature space is important for

the design of application software. It allows for the designer

to develop a deeper understanding of the application domain

and the data layout. This allows for an adequate system layout

without using too simple or overly complex methods.

Additional constraints arise from the application context.

Since real-time capabilities are required for many mechatron-

ics applications, we also require them in this study.

Situation awareness as outlined here has two benefits: In

simple mechatronics applications, the encoded pose can be

used as an input to a control system. In complex applications,

the encoded pose can be used to switch between multiple pose-

specific processes. It could for example be possible to switch

between different kinematic or action models depending on

the perceived pose. Simple models could be used for simple

poses, saving CPU time for the analysis of more difficult poses

or the execution of other processes.

In this paper, situation awareness is solved by constructing

a feature space for appearances of human poses:

• First, a combination of different filters is used to detect

persons in a video and separate them from background.

We use RGBD-cameras to record the input images.

• The next step is to perform a skeletonisation of the

foreground, which reduces the search space to the medial

axes of body and limbs. This is an important advantage

over generic keypoint detectors which are usually based

on local image structure only.

• Then we perform a spatio-temporal segmentation that

provides the trajectories of individual persons in a scene.

Compared to model based methods, the spatio-temporal

segmentation has the advantage of being computationally

slim while providing a similar result. At the same time,

it is much more generic because it is not restricted to the
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modelled scene type. The method is appearance based

and requires only a small set of predefined rules. Since

no training is needed, this brings a massive saving in CPU

time (compared e.g. to the 1 day training time on a cluster

with 1000 cores mentioned by Shotton et al. [14]).

• We compute an appearance based feature descriptor

encoding the pose of every single person. We show

that the feature descriptor preserves pose similarity and

allows for a clustering and sampling of the space of

pose appearances. This allows for situation awareness in

scenarios with human-computer interaction.

• Finally, we visualise the feature space by linearising and

aligning it along a Hilbert curve.

II. RELATED WORK

The recognition and tracking of persons has been addressed

in different ways depending on the sensor configuation and

area of application. For image retrieval, people must be

recognised from single pictures. Approaches dealing with such

data are typically contour based [15] or part pased [16].

Since geometrical information is only indirectly accessible,

such methods require complex machine learning algorithms

to be viable in limited tasks. For robotics applications such

approaches are usually not fast enough and lack robustness.

In video surveillance, hardware cost is often critical. As

a consequence, people must be detected and tracked from

sequences of colour images. The use of dynamical information

simplifies foreground/background segmentation, especially in

the processing of sports videos [17]. Repetitive movements can

be learned from spatio-temporal volumes [18] or sequences of

limb configurations [19].

By using multiple cameras or depth sensors, it is possible

to measure the 3D geometry directly [20]. The popular ap-

proach of marker-based motion capturing [21] is undesirable

in most mechatronics applications because it requires very

strong manipulations of the recorded scene. Instead, most

approaches use a 3D model that represents configurations of

body parts or a 3D mesh of the body surface. The use of a

model limits the range of possible interpretations of the input

data, which has a strong noise suppressing effect. Model-based

approaches use global or mixed global/local optimisation to

estimate the 3d-pose of a person. Global methods try to find

the model parameterisation that best explains the observation.

As a consequence, a high correspondence between model and

data can be achieved [22]. Since mesh models have many

degrees of freedom, global optimisation is computationally

expensive.

For real-time applications, simplified stick models have been

developed [23], [24], [14] which are adapted to feature based

representations of the input images. Stick models represent the

kinematics of the human body in a simplified way. Features

used for adapting the model can be body part detections [14],

skeletons [24] or Reeb graphs [25]. The use of intermediate

feature representations reduces the search space compared to a

purely global optimisation. Noise in the parameter estimation

can be reduced by incrementally updating the results of the

last video frames. However, often a manual initialisation of

the model must be given.

The scope of a model is often limited [22]. Detailed

3D-meshes as well as silhouette based models often cannot

adequately model clothing.

Most estimators assume particular scene properties like full

body observations [14] or upper body observations [26]. In

order to further constrain the scene interpretation, assumptions

about the scene context, physics and actors are made [27].

The variety of models, each one with relatively small scope,

exhibits a certain discrepancy between kinematic model and

observation. The variety of possible appearances is usually not

addressed. This study therefore aims at incorporating a higher

level of awareness of the observed situation. To this end, we

do not represent human poses by the parameters of a model

with limited scope but by a pose sensitive descriptor of the

appearance of a person.

Most of the existing pose descriptors are based on joint

angles of a stick-model, extracted for example by the skeleton

tracker of the Kinect SDK [28], [29], [30]. The scope of such

descriptors is therefore limited to the scope of the underlying

model. Lu et al. [31] present an appearance based solution by

applying the shape context [32] to silhouettes of people. The

descriptor is used to model action segments. In contrast to

the work of Lu et al. , our descriptor is based on the medial

axes instead of the silhouette. This reduces the sensitivity to

contour variations produces e.g. by clothing. Our descriptor

also distinguishes angles of limbs, so it is more selective

for differences in pose. Our approach differs also in the

desired use: We demonstrate that the descriptor preserves pose

similarity, how the feature space can be visualised, and that

it encodes both important key poses as well as the recording

situation. As a consequence, we establish situation awareness

with respect to the pose of a person and the way it is depicted

in the image, independently of the limited scope of a kinematic

or surface model.

III. PROPOSED METHOD

In a bottom-up procedure, the input images obtained from

a Kinect camera are transformed into increasingly abstract

representations: At first, we filter out noise and defects in the

sensor data. The input images are then condensed to a keypoint

based representation that focusses on aspects relevant to the

recognition of persons. A segmentation algorithm detects

single persons. The pose of a person is encoded by a feature

descriptor that allows for visually plausible comparisons of

pose and appearance. A visualisation based on the Hilbert

curve is proposed to analyse the space of pose appearances.

A. Image Filtering and Keypoint Detection

The Kinect sensor provides a colour image and a depth

map of a scene. The sensor illuminates the scene by a

known, static, locally unique speckle pattern. The depth map

is computed according to the principle of stereoscopy as the

inverse proportion of the disparity of the pattern as it appears

to a built-in infrared camera [33]. The camera performs a

non-uniform quantisation of the depth values according to a

quadratic increase of the noise level [34]. As a consequence

of the active illumination, the camera does not provide depth



IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. XX, NO. X, XXXXXXXX XXXX 3

measurements for surfaces that distract or absorb infrared light,

e.g. window panes, computer monitors, or occasionally black

cloth.

Missing values in the depth map are inpainted as the local

medians in a pyramid image of the existing depth values.

The method is real-time capable, scale-invariant, and works

for most situations except for overlappings with foreground

objects. In order to prevent in such situations, the scene

background is estimated from the depth maps over time. The

depth map is then corrected by using the maximum of the

local median and the depth of the background.

The inpainted depth map is then transformed into a disparity

map by applying the inverse of the quantisation function. Since

the exact camera intrinsics are not relevant to our problem, our

’disparity’ map just gives the index of the quantisation level of

the original depth map. The mapping is done efficiently using

a lookup table. The important property of the disparity map

is that the noise level is uniform over depth.

In order to reduce the search space, we condense the

input images (ca. 106 pixels) to a comparatively small set of

keypoints (ca. 103). To this end, we first extract the contours of

the foreground objects. by thresholding the gradient magnitude

of the disparity map. The method is robust because persons

stand out clearly in disparity and we have a uniform noise level

over depth. Since isolated contour pixels disturb the following

keypoint detector, we remove all connected components with

less than 10 pixels from the contour. As a keypoint detector, we

use a 2D skeletonisation [35] of the extracted contour pixels.

Compared to corner based keypoint detectors (e.g. SIFT [36]),

the method has the advantage that keypoints tend to be located

on the medial axes of the limbs and body, which is a good

starting point for pose extraction. A related approach is to use

Reeb graphs [25]. They are however sensitive to the alignment

of an elevation function. 3D approaches like Reeb graphs and

3D skeletons are also computationally costly, which makes

them unattractive for real-time applications [24] Compared to

depth invariant approaches [37], the method has the advantage

that the number of keypoints created for the background is low.

To further reduce the number of keypoints in background

areas, we discard all keypoints where the proportion of nearby

foreground pixels to nearby background pixels is less than

20%. A pixel is considered ’nearby’ if it is closer than the

nearest contour pixel.

B. Scene Segmentation and Detection of Persons

The keypoint extraction simplifies the detection of persons

to a 2D clustering problem in the x-depth plane. Remaining

difficulties are the consistency of cluster labels over time, the

handling of elongated clusters (e.g. created by stretching out

an arm), the determination of the number of clusters, and the

absorption of noise into separated clusters.

In order to deal with these problems, we developed an

algorithm that combines techniques from k-means, mean-shift,

and minimum distance clustering.

The clustering algorithm stores the state of the current

segmentation s = {kmax, k, r,M,A,Lµ} and updates it for

every new frame. The values kmax and k are the maximum

Algorithm 1: The sub-procedure increase k determines a

set of means that covers a set of feature descriptors

input : State s of the segmentation

Set F of feature descriptors

output: State s with additional means

bubblesort k means M by age A;

let cluster size c = (c0, . . . , ckmax
) = 0;

for all f ∈ F do

// Search for mean µj near f

let M̃ = argmaxµ{a(µi) : µi ∈ M ∧‖f − µ‖ < r

∧i < k};

if M̃ 6= ∅ then

pick first µj ∈ M̃ ;

let cj = 1 + cj ;

else

// Increase k if no mean matches

if k < kmax then

let µk = f ;

let a(µk) = 0;

let ck = 1;

let k = k + 1;

end

end

end

and the current number of means. The maximum number of

means is a user definable parameter of the algorithm which we

set to kmax = 15. Too small values reduce the ability of the

algorithm to absorb noise. Large values slow down the algo-

rithm. Parameter k is set automatically by the algorithm. The

variable r denotes a radius around a mean (here r = 50cm).

The state contains kmax means M = {µ0, µ1, . . . , µkmax−1}
of which only the first k are used.

Every mean has a segment label l(µi) and an

’age’ a(µi). The state contains the vector of labels

Lµ(l(µ0), . . . , l(µkmax−1))
⊤ and the vector of ages

A = (a(µ0), . . . a(µkmax−1))
⊤.

The clustering algorithm assigns a data points to a means.

By µ(f) we denote the index of the mean assigned to a feature

descriptor f . The function µ(F ) represents the indices µ(f) of

all feature descriptors f ∈ F = {f0, f1, . . . , fn}. The set M

contains therefore all means µi where i = µ(fj) and fj ∈ F

plus those means that have not been assigned to any descriptor

in F .

The overall structure of the algorithm is as follows: At

first, state s is initialised. Then for every new video frame,

the features F are extracted. By calling the sub-procedure

increase k(s, F ), the number of clusters is determined. The

cluster positions are refined by three iterations of the sub-

procedures local neighbourhood(s, F ), mean shift(s, F ), and

reduce k(s, F ). The final assignments of features to clusters

are determined by a nearest neighbour search.

The sub-procedure increase k (see Alg. 1) adapts k by

performing a minimum distance clustering. At first the means

are sorted by age. We use bubblesort because the number of

means is small (kmax = 15). By setting the variable c to zero,



IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. XX, NO. X, XXXXXXXX XXXX 4

Algorithm 2: The sub-procedure local neighbourhood

assigns data points to randomised, neighbouring means

within radius r

input : State s of the segmentation

Set F of feature descriptors

output: Assignment µ(f) of means to descriptors

Compute np permutations Pg(h) of h = 0, 1, . . . , k − 1
where g = 0, . . . , np − 1;

for all fi ∈ F do

µ(fi) = min{j : ‖µPi mod np (j)
− fi‖ < r};

end

we mark all means as unused. We then assign every descriptor

f to the first mean within a distance r. This is done in order

of age, so old and large clusters are systematically preferred.

A matching mean is marked as being used. If the descriptor

is not close to any mean, the algorithm checks if k can be

incremented. If all means are already in use, then f is not

assigned to any mean. The result of the sub-procedure is a

full coverage of the descriptors by circular disks with radius r

around the means as far as it is possible with the given kmax.

The positions of the means are still very inaccurate. A

small number of mean-shift iterations are conducted to move

the means in the density maxima of the feature set. The

sub-procedure local neighbourhood (Alg. 2) assigns means to

close feature descriptors, i.e. it computes µ(f). In the mean-

shift step, the means are updated over the respective feature

descriptors. Only one mean is assigned to one descriptor.

The ambiguity of overlapping means (with respect to their

radius) is resolved by randomisation. A set of four random

permutations of means is precomputed in the beginning of

the sub-procedure. A feature descriptor fi is assigned to the

first mean found to have a distance from fi smaller than r.

The means are evaluated in the order given by permutation i

modulo four.

The sub-procedure mean shift recomputes the means as the

arithmetic average

µj =
1

cj

∑

i:µ(fi)=j

fi (1)

of all feature descriptors assigned to that mean. The means

are normalised by the cluster size cj = ‖{i : µ(fi) = j}‖.

The age a(µj) is increased by the value 1+
√
cj . The number

1 asserts a minimum increase. The root function serves as

an approximate measure of the cluster diameter. The age has

therefore the meaning of a ’diameter over time’.

As a result of the mean shift, multiple means can move

to the same density maximum. The sub-procedure reduce k

(Alg. 3) removes such redundant means and lowers the value

of k. To this end, the procedure test all means in decreasing

order of their index. Means that have not been assigned to

any feature descriptors are deleted by sorting them to the

end of the list and reducing k. Non-empty means are tested

for overlapping with other means. The overlap is detected by

comparing the distance between the mean by a threshold r2

which we set to 70% of r. The cluster with lower age is either

Algorithm 3: The sub-procedure reduce k identifies re-

dundant means and reduces k accordingly

input : State s of the segmentation

Radius r2 < r

output: State s with less means

for i = k − 1, k − 2, . . . , 0 do

if ci = 0 then

// Delete empty cluster

k = k − 1;

swap means i and k;

else

// Check overlap with other

clusters

for all j < i where ‖µi − µj‖ < r2 ∧ cj 6= 0 do

if a(µi) < a(µj) then

// Delete cluster i now

k = k − 1;

swap means i and k;

else

// Delete cluster j later

set cj = 0;

end

end

end

end

deleted or marked for deletion. The usage of a second radius

r2 introduces a certain tolerance for small or close objects.

Otherwise, small objects would be merged to overlapping

nearby clusters with higher age.

The function used for swapping means is also used in

the bubblesort algorithm (Alg. 1). It does not only swap the

means but also the corresponding age and segment label.

The segments therefore have a consistent label over multiple

frames, although the indices of the means are permanently

changed.

C. Encoding, Comparison, and Visualisation of Poses

A histogram-based approach is chosen to encode the ex-

tracted segments as a feature descriptor. A regular 9 × 9-

grid is imposed over the bounding box around the keypoints

of a segments. For every grid cell, a four-bin histogram of

the branch orientation of the skeleton is computed. A mild

Gaussian smoothing is applied to increase the generalisability

over small pose variations. The descriptor is the concatenation

of all histograms. Figure 1 shows an example. The normalised

correlation coefficient is used to compare the histograms.

Compared to graph-matching algorithms on skeletons, the

approach is easier and more noise tolerant. It is not necessary

to extract the endpoints of the skeleton, correct loops, close

gaps, or consider dependencies between structure and feature

values. Instead, the vector-shaped format of the feature de-

scriptor makes it easy to combine the method with modern

kernel based classifiers. Such methods easily map separate

regions of a feature space to a common class label. It is
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therefore not necessary to manually resolve ambiguities in the

graph structure.

The space of pose descriptors is not Euclidean because

the triangle equation is not satisfied. There must also be

’forbidden’ zones in the feature space because many bins of

the histograms are mutually exclusive. In order to visualise

the space of pose descriptors, we apply Kruskal’s minimum

spanning tree algorithm to the data. The minimum spanning

tree is then traversed in preorder. The resulting linearisation of

the feature space is aligned along a Hilbert curve [38] which

has the property of arranging clusters in the linearisation in

compact 2D regions. The chosen procedure has the advantage

that it does not rely on a metric space, averages, medoids, or

a preset number of clusters.

IV. EXPERIMENTAL RESULTS

We conducted practical experiments in a kitchen environ-

ment. Our sample videos showed different actors performing

manipulations with kitchen objects, e.g. placing objects on the

cabinets, passing objects from one person to another, or wiping

the table.

A. Spatio-Temporal Segmentation

The spatio-temporal segmentation was able to detect people,

track them over time, and automatically adapt the number of

clusters. Figure 2 shows some results.

In the first example, the person is tracked while being

handed over a kettle from a person outside the image. A

new segment for the kettle and arm is created during the

action. Additional clusters absorb spurious keypoints in the

background of the right image border. The cluster labels

remain stable during the handover task in spite of the touching

segments. Since the method automatically creates new clusters

for noisy detections, it can handle significant amounts of noise.

Noise clusters are easy to recognise by a small size and age.

The second example shows that the segment labels assigned

to the two persons remain stable despite the large overlap

in the image plane and interaction with foreground objects.

An additional cluster is created for the newly discovered

foreground objects (the ketchup bottle is detected by the

background estimator after it has been moved for the first

time). Little inaccuracies in the plot result from using a

rectangle based drawing algorithm.

The limits of the method are people standing very close

together and disruptions of the temporal trajectory.

We also compared the method to the graph-based seg-

mentation by Felzenszwalb and Huttenlocher [39] but the

computation time of that method was in the order of magnitude

of up to one hour for a single frame.

B. Encoding and Retrieval of the Pose

To evaluate the distance measure, we recorded 200 poses

from a video sequence showing two people working in a

kitchen. Near duplicate poses were detected and removed by

comparing the CRC32 hash codes of the feature descriptors.

For every pose, the distances to the other poses were com-

puted and sorted by similarity in decreasing order. Figure 3

gives an impression of the results. The left image in a row

shows the reference pose. The numbers give the normalised

correlation coefficient scaled to the interval [0 100]. Due to

the limited space, only poses with highest correlation and

uncorrelated poses with a minimum correlation coefficent of

zero (corresponds to a value of 50 in the figure) are given.

Anticorrelated poses and poses with weak correlation are left

out. The first rows show the result fore relatively complete

skeletons. The last row shows the poses retrieved for a noise

sample consisting of only one keypoint.

The retrieved poses show a high visual correspondence

with the reference pose for normalised correlation coefficients

between 0.5 (i.e. 75 in the figure) and 1.0 (i.e. 100 in the

figure). With decreasing numerical correlation also the vi-

sual correspondence gradually decreases. The highest ranked

search results are visually homogenous with only rare visual

outliers. A consistent anticorrelation consists between the

most clearly outlined skeletons and the most noisy detections.

Areas of corresponding pose in feature space are thus not

contaminated by spurious detections. From the results it is

also visible that for correct retrieval it is not necessary that

the skeleton exactly follows the medial axes of limbs and

body. The method tolerates additional and missing loops and

branches in the sense that they reflect a consistent behaviour

of the keypoint detector.

C. Visualisation of the Feature Space

Figures 4 and 5 visualise the feature space for 256 and

4096 poses sampled from a set of videos of kitchen scenes.

The course of the Hilbert curve is indicated by a thin red line.

The figures show a clear grouping of homogeneous poses

in compact 2D regions. The upper right corner of Fig. 4 shows

a knee-shot of the ’Psi’-pose (known from some calibration

methods) with slightly higher arms. The cluster below shows

a full body side view of a person leaning over a cabinet. This

pose is problematic for many model-based methods because

it is atypical for gaming applications and because of self-

occlusion. Below this cluster, there is a group of Psi-poses

with horizontal arm posture. The lower right corner shows

a cluster of similar noisy detections. Many more poses can

be discovered in the figure. Fig. 5 is of course too small to

recognise any concrete pose. However, the clustering is also

visible for the 4096 poses. The right figure shows the overall

structure of the minimum spanning tree. The tree consists

of small subtrees plotted on the left side of the graph. The

subtrees are connected by the path of maximum length in the

graph. The nodes along the path of maximum length appear

as good prototypes for distinctive poses. It must be taken into

account that the size of the subtrees is related to the frequency

of a pose in a certain application.

In summary, the method is able to produce a very clear and

intuitive 2d-representation of the originally 324-dimensional

feature space.

V. CONCLUSION

The recognition of humans is crucial to a number of mecha-

tronics applications. This paper presented a generic appearance
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based solution for automatic detection and pose estimation.

The method has solved the problem of overspecialisation to a

specific scene configuration that can be seen in many model-

based approaches. It does not need training and is real-time

capable. Our experiments have shown that the proposed spatio-

temporal segmentation is able to detect persons and track them

over time. The method adapts automatically to the number of

people and tolerates noise and occlusion to a large degree.

The proposed pose descriptor allows for a visually convincing

retrieval of similar poses. This is for example important to

connect the system to a data base with further information.

This paper also presented a visualisation method based on a

clustering and a Hilbert curve that maps the 324-dimensional

space of pose descriptors to a compact 2d-representation while

preserving pose similarities.
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Fig. 1: The bounding box of a skeleton is subdivided by a regular 9× 9-grid. The orientation of the branches of the skeleton

is computed and written to four 9× 9-histograms. Each 9× 9-histogram represents one direction (indicated by an arrow). As

a result, the first histogram shows only the legs, the second histogram the arm, the third histogram the shoulder and head, and

the fourth histogram the back.

Fig. 2: Spatio-temporal segmentation of two kitchen scenes.

Fig. 3: Skeletons ordered by correlation coefficient.
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Fig. 4: Clustering of 256 skeletons by a minimum spanning tree algorithm. The red line indicates a linearisation of the tree

by a preorder traversal. The line is drawn as a Hilbert curve for a compact survey of the whole data.

a) Overview of 4096 skeletons b) Minimum spanning tree

Fig. 5: Clustering of 4096 skeletons shown as a mapping of a minimum spanning tree to a Hilbert curve (a) and as the tree

itself. Due to the number of skeletons and the small size, only the global properties of the clustering are visible.
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Abstract

The power of fractal computation has been mainly exploited for image compres-
sion and halftoning. Here, we consider it for finding a fast approximate solution for the
fundamental problem of nearest neighbour computation in the image plane. Traditional
solutions use Delaunay triangulations or hierarchies (for the case of optimal solutions)
or kd-trees for approximate ones. In contrast, we use a space-filling Hilbert curve which
allows us to reduce the problem from 2D to 1D. The Hilbert curve has already been
used to optimise high-dimensional nearest neighbour queries in the context of data base
systems. In this paper, we propose a simplified solution that fits better to the computer
vision context. We show that our algorithms solve two particular nearest neighbor prob-
lems efficiently. We provide practical results on the accuracy of the method and show
that it is significantly faster than a kd-tree.

1 Introduction

Nearest neighbour searches in the image plane are among the most frequent problems in a
variety of computer vision and image processing tasks. They can be used to replace miss-
ing values in image filtering, or to group close objects in image segmentation, or to access
neighbouring points of interest in feature extraction. In image filtering, the filter result is
often only computed for a sparse set of key points. This is either the case if the processing
of the whole image would take too much time or if only a small set of pixels is suitable
for processing (e.g. because of the aperture problem). The missing filter output must then
be interpolated between the nearest keypoints. In image segmentation, nearest neighbour
searches allow for a (possibly recursive) combination of close points to more complex ob-
jects, which leads to a fine-to-coarse decomposition of the image [28, 30]. In particular for
object recognition, the concept of spatial proximity seems to be of fundamental importance,
with a clear effect on the image statistics [29]. Figure 1 illustrates examples of common
nearest neighbour problems.

c© 2013. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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a) Interpolation between sparse keypoints b) Line feature extraction

Figure 1: Nearest neighbour problems in the image plane. a) Mesh of SIFT keypoints used to
detect the movements of cows in a stable. Since there are only measurements for the nodes of
the mesh, pixels within the cells must be assigned to the nearest node. As a second nearest
neighbour problem, the cells of the mesh can be constructed by finding two neighbouring
nodes for every node. Missing measurements can then be interpolated between the corners
of a cell. b) Estimation of the orientation of the edge through point B. The edge is represented
by keypoints A–D. The orientation is computed by constructing the line segment of B to the
approximate nearest neighbour D instead of the exact nearest neighbour A.

Traditional solutions to such nearest neighbour problems are a pixel-wise search within
adaptive or fixed-size image windows, or the use of Delaunay triangulations and kd-trees.
Search windows are unattractive because many irrelevant pixels must be visited. Fast results
can only be achieved by using small windows or sub-sampling, often with a loss of accuracy.
And although fast approximate results would often be preferred over accurate but slow com-
putations, fixed window sizes may simply not suit the problem well. Balanced trees are more
attractive because of their logarithmic run-time for a nearest neighbour search. The construc-
tion of the tree however introduces additional overhead, in the case of video sequences even
repeatedly.

In this paper, we propose a fractal approach to achieve an approximate solution. The ba-
sic idea is to map the image plane to a one-dimensional space filling curve, the Hilbert curve,
and perform the nearest neighbour search there. The Hilbert curve is known to keep the orig-
inal 2D-relationship to a certain degree. As a result, an approximate nearest neighbour can be
found by searching the nearest neighbour (in other words the successor or predecessor) in a
linear list. This can be done in one step or in log-log time depending on the implementation.
Since the mapping is the same for every image (assuming a fixed size), there is no repeated
overhead for video sequences. The theoretical and experimental results in this paper show
that the proposed method is quite powerful in a computer vision context. Surprisingly, the
use of space filling curves is largely unknown in this domain. Rare counterexamples include
the application in halftone methods [26], image compression [22], and edge detection [19].
Aside from simplifications of the exact method [10], the contribution of this paper consists
in the transfer of the method from database systems to computer vision.

2 Related Work and Problem Definition

The nearest neighbour problem is usually stated independently of the application as returning
the point p ∈ S,S = {(x1,y1), . . . ,(xn,yn)} that minimises the Euclidean distance ||p− q||2
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to a query point q = (x,y). The simple solution of a linear scan comprises a comparison of
q to all elements of S, which is too time-consuming for most applications, especially those
with real-time requirements.

In image processing and computer vision the search space can often be reduced if the
nearest neighbour is known to lie on an edge or another detectable feature. Contour trac-
ers [15, 25] can then lead to fast results. The drawback of such methods is that many special
cases must be considered and contours may be broken because of noise. A full search for the
continuation of an edge after a gap is slow and complicated. A noise-tolerant but still slow
solution could be to use active contours [18], where the shape of a contour is optimised with
respect to energy functionals describing the adaptedness to the image and the shape com-
plexity. Contour tracing does not benefit from information of neighbour searches of adjacent
query points, which makes the method slow for dense sets of query points.

If the nearest neighbour p ∈ S must be found for every coordinate q ∈ I of an image
I = {(0,0),(0,1),(0,2), . . . ,(W,H)} of width W and height H, we obtain the all nearest

neighbours problem. This problem occurs frequently in modern saliency based approaches,
where only robustly detectable image regions are processed (exemplarily [20]). Filter results
for subsequent steps (e.g. object movements) are only computed for keypoints placed in those
regions. In order to assign the filter results to single pixels, it might be necessary to find the
nearest keypoint. The problem can be solved by a distance transform [27]. The method
exploits that images consist of connected discrete pixels. The result can then be computed
in two passes through the image [14, 27], and hence in linear time. The coordinates of the
nearest neighbours can be recorded in the same process. The method does however not
generalise to the k-nearest neighbour problem, where k neighbours p1, . . . , pk of a query
point q must be found with distance ||pi −q||2 ≤ ||p j −q||2, i ≤ k, j > k.

Graph-based methods [4, 8, 12] are also often used for nearest neighbour searches in
computer vision, although these methods do not benefit from any image specific structuring
of the data (e.g. contours). Approximate solutions can be computed by recursively subdi-
viding the search space into smaller cells by using a kd-tree [3, 4, 21]. The approximately
nearest neighbour in a bounded uniform distribution is found in O(lgn) by searching a list
of cells ordered by proximity to the query point. Exact solutions can be computed by us-
ing Delaunay hierarchies [8, 12]. One recent result to the nearest neighbor problem are full
Delaunay hierarchies [6]. The main difference between an ordinary Delaunay triangulation
is to additionally record all edges that have been used during the incremental construction.
Using a randomized incremental construction of the Delaunay triangulation, the approach
uses O(n lgn) expected time for building the data structure with an expected number of
O(n) edges. The expected number of nodes traversed for finding the nearest neighbor by a
simple greedy algorithm yield an expected query time of O(lgn). Different to many other
approaches, once the graph is constructed, an additional search structure is not needed.

To simplify high-dimensional nearest neighbour queries, locality sensitive hashing has
been proposed [13, 23, 31]. The idea is to map the input data on the unit hypercube in a way
that preserves the original distance relationships to a certain degree, even if the Hamming
distance is used to compare the mapped vectors. The methods have been shown to allow
for fast vector comparisons, predominantly for SIFT-related data sets. For low-dimensional
data, such methods are too coarse: The cited approaches would divide the 2D-plane into at
most four areas.

Space filling curves have originally been introduced to demonstrate the existance of a
point-to-point mapping of the real valued unit square to a continuous curve [24]. The Hilbert
curve [17], a variant of the original Peano curve [24], is defined as the recursive subdivi-
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Figure 2: Hilbert curve for a 2× 2 (on the left), 4× 4 (middle) and 8× 8 image (on the
right). Pixels are counted along the curve. The second curve (and higher resolutions) can be
computed (recursively) from the first one by replacing each corner by a rotated and reflected
version of the basic U-shaped pattern.

sion of a square into four sub-squares with a U-shaped ordering imposed on the sub-squares
(cf. Fig. 2). In the case of discrete images, the recursion stops after a certain number of itera-
tions R. This results in a subdivision of the unit square into W = H = 2R rows and columns.
There are several algorithms that can be used to compute the complete mapping in linear
time (in terms of the number of pixels) [9, 16, 17]. For a specific image coordinate, the
corresponding index of a point on the Hilbert curve (the Hilbert index) requires the recursive
descent over R levels and a number of bit operations on each level, hence the complexity is
O(lgW ). The mapping preserves 2D-distance relationships in the sense that neighbouring
points on the Hilbert curve are neighbouring in the image, too. Larger distances are pre-
served by the quad-tree-like recursive subdivision of the image. This has motivated to use
the Hilbert curve to answer exact [10, 11] and approximate [32] nearest neighbour queries.
To compensate for errors in the mapping, the Hilbert indices of adacent image coordinates
must be found. This can be solved by reducing the problem to the easier Peano curve [10]
or by evaluating multiple mappings [32]. Most methods consider high-dimensional input
data. The generalisation of the Hilbert curve to more than two dimensions is however not
as straightforward as it seems. Alber and Niedermeier [1] show that already in 3D there
are 1536 structurally different curves with Hilbert property, which might be a potential for
further optimisation. Aside from nearest neighbour computations, the Hilbert curve is also
used to visualise high-dimensional data sets [2].

We observed that in many computer vision applications, a high accuracy of the nearest
neighbour search is not needed. Our method therefore differs from the above mentioned ones
in that we do not attempt to correct the inaccuracies in the mapping of 2D to 1D-distances.
As a result, our method is able to find close points at low computational cost.

3 Proposed Method

Our method answers two types of nearest neighbour problems in three steps each: At first,
the mapping between 2D and 1D-coordinates must be computed. For the all nearest neigh-
bour problem, the set of keypoints S must be written as an array. The nearest neighbour
assignment can then be done in two passes throught the array. For the k-nearest neighbour
problem, the set of keypoints S must be stored in a priority queue. The neighbours of a query
point q can then be found by using the successor function of the queue.

A Hilbert curve of recursive depth R subdivides the unit square into 2R rows and columns.
The size of the sub-squares is 2−R × 2−R. We map an image with unit square sized pixels
(i.e. integer coordinates) to the unit cube by applying the scale factor 2−R. To make sure that
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Figure 3: For elongated rectangular images it is possible to use only the upper half of the
Hilbert curve or to stitch together multiple Hilbert curves.

an image with W columns and H rows fits into the unit cube, the recursive depth must be R =
⌈log2 max(W,H)⌉. We obtain C Hilbert indices range from 0 to 22R−1. More recursions are
redundant. With this scaling, we have a correspondence between the Hilbert indices of the
1D-curve, the sub-squares of the unit-cube, and the pixels of an image. Rectangular images
and images whose side length is not a power of two do not cover the unit square completely.
An image of size 640× 480 would be mapped to a 1024× 1024 grid in the unit cube. In
this case, only 30% of the Hilbert indices correspond to pixels in the image. Since the
algorithm for the all nearest neighbour computation requires a loop over all Hilbert indices,
it might be advantageous to cut the Hilbert curve to the the upper half of the unit square,
or to string together multiple Hilbert curves (Figure 3) in order to reduce the overhead. In
the rest of the paper, however, this optimisation is not used. The result of the first step is
a mapping M(x,y) : N2 → N of image coordinates (x,y) to Hilbert indices, as well as the
partial inverse mapping M−1(i) : N → N

2 of a Hilbert coordinate to the image coordinate
(x,y). The mapping must be computed only once for a fixed image size. For the whole
image this can be done in linear time with respect to the number of pixels. We use arrays to
store the mapping.

The mapping is used to solve two types of problems. In the all nearest neighbour com-
putation we find the approximately closest keypoint p ∈ S for all pixels q ∈ I.

Theorem 1. The all approximately nearest neighbour problem can be solved in precompu-

tation time O(C+n) and query time O(1). It uses O(C) space.

Proof. Constant query time is achieved by computing a lookup table T of size O(C) with
the results. The indices of the lookup table are the Hilbert indices. At first, we mark the n

keypoints S in the table, which is O(n). In one forward pass, we compute for all indices i

the distance i− j to the nearest keypoint with lower Hilbert index j. To this end, we need
to check if index i of the lookup table corresponds to a keypoint, i.e. if M−1(i) ∈ S. In that
case, we set the distance to zero. We also set it to zero if there is no preceding keypoint.
Otherwise we increment the distance of the preceding table entry by one. The check and the
distance increment can be done in constant time, so the general complexity of the forward
pass is O(C). In a backward pass, we compute the distance to the nearest keypoint with
higher Hilbert index. Then we assign each index of the Hilbert curve to the nearest keypoint
index from the forward and backward pass. The complexity of the backward pass is again
O(C). The total complexity is therefore O(n+C).

The second problem is the approximately k-nearest neighbour problem.

Theorem 2. The approximately k-nearest neighbours can be found in precomputation time

O(n lg lgC) and query time O(lg lgn+ k). The space requirement is O(C lg lgC).
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Proof. We build a priority queue Q where all n keypoints S are ordered by their Hilbert
index M(p), p ∈ S. Using the precomputed arrays for M, the Hilbert index of a key point
can be found in constant time. Inserting an element in a priority queue takes constant time
plus an overhead of O(lg lgC) for locating the right position in the queue using the successor
function [7]. The complexity for inserting n elements is therefore O(n lg lgC). By linking all
adjacent elements of the queue (in O(n)), we can find the successor and predecessor of an
existing element in constant time. The priority queue needs to be computed only once for a
given set of keypoints. The precomputation time is therefore O(n lg lgC).

For a query point q, the approximately nearest neighbour can be the successor of M(q)
in Q or its direct predecessor. The successor M(ps) can be found in O(lg lgC). Its direct pre-
decessor M(pp) is found in constant time using direct links. The comparison of the Hilbert
indices (|M(q)−M(ps)| and |M(q)−M(pp)|) and the nomination of an approximately near-
est neighbour is also constant time. The remaining k−1 neighbours can be found by reading
out the directly linked (k−1)/2 predecessors and (k−1)/2 successors, which are single step
operations. The k nearest neighbours can therefore be found in time O(lg lgC+ k) once the
queue is constructed. The space requirement is O(C lg lgC) [7].

4 Experimental Results

We first measured how well 1D-neighbourhoods on the Hilbert curve correspond to 2D-
neighbourhoods in an image and vice versa. To this end, we created a 256× 256 image
together with its Hilbert curve. We sampled a first list of 50 000 pairs of points on the
Hilbert curve with a maximum difference of 10 in their Hilbert indices. For every pair we
then computed the corresponding 2D-Euclidean distance in the image. As Fig. 4 (left) shows,
close points in 1D are close in 2D as well. On average, the 2D-distance is the square root
of the 1D distance. Median and mean are close together, so there are no serious outliers to
the rule. We then sampled a second list of 50 000 pairs of image points with a Euclidean
distance less than 10 and measured the corresponding 1D-distance of their Hilbert indices.
Figure 4 (right) shows that close points in 2D are not necessarily close in 1D. The 1D-
distances are not normally distributed and the mean deviates from the median because of far
outliers (the maximum 1D-distance was about 54 000 for every 2D-distance). The relatively
unaffected median of only up to 200 shows that the number of outliers is however below
the 50% breaking point of the median. For our nearest neighbour search this means that
the approximated result will be close to the query point in 2D if it is close on the Hilbert
curve in 1D. The distance in 1D will be small because it is minimised by our algorithm. On
the other hand, our method will sometimes miss the exact nearest neighbour because small
2D-distances do not necessarily translate to small 1D-distances. But because of the good
1D-to-2D-correspondence, the result will still be good.

In order to measure the accuracy of the method, we solved the all nearest neighbour
problem for a small image and varying numbers of keypoints first using the proposed ap-
proximation and secondly using an exact method. It turns out that our approximation yields
the same nearest neighbour as the exact method in about 50% of the queries (Fig. 5). Even
in the case where the proposed method produces different results, the approximated neigh-
bour is close (as shown above). As Fig. 6 shows, the proposed method produces a compact
partitioning of the image plane. It is roughly comparable to the Voronoi diagram of the exact
solution.

We benchmarked the computation time of our method for the all nearest neighbour prob-
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Figure 4: Relationship between corresponding 1D and 2D-distances for randomly selected
pairs of close points (distance < 10) once in 1D (left diagram) and then in 2D (on the right).
The left diagram shows that the approximated nearest neighbour is close to the query point
in 2D if it is close in 1D (which it is expectedly).

Figure 5: Probability of finding the exact nearest neighbour by applying the proposed ap-

proximative method to a 256× 256 image. For a cursory reader we remark that it is quite
improbable to find the nearest neighbour by chance (baseline curve).

Figure 6: All nearest neighbour assingment using the proposed approximative method (left
image) and an exact search (right image) for 240 keypoints (marked by crosses). The result-
ing cells are coloured randomly but consistent over both diagrams.
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Figure 7: Using a Hilbert curve to display the clustering of a high dimensional data set: The
data set consists of images of skeletons of persons in Kinect images. Each skeleton is de-
scribed by a 3D-histogram over the x and y image coordinate and the angle of a branch of
the skeleton. The angle was found using the proposed nearest neighbour method to vectorise
the branches (similar to the method outlined in Fig. 1 a). The skeletons were clustered by
computing the minimum spanning tree in a fully connected graph weighted by the cross cor-
relation between the histograms. A preorder traversal of the tree yields a 1D-visualisation of
the data. The Hilbert curve was used to obtain a more compact and space effective represen-
tation.

lem against a kd-tree [5] which provides an exact solution in O(lgn) query time. Our input
data is an image with 1920× 1200 query points and 4753 keypoints provided by a feature
extractor. The software was run on an Intel Core-i7 2670QM processor in a single-threaded
implementation. We measured a precomputation time of 1.9ms to build the kd-tree, and
536.7ms to find all nearest neighbours (averaged over 100 runs each). For the proposed
method, we measured 195ms for initialisation and 29.8ms to find all nearest neighbours
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(again averaged over 100 runs). This is a speed-up factor of 18. For a smaller image of
1280× 800 pixels and 4694 keypoints, building the kd-tree took again 1.9ms, whereas the
nearest neighbour computation took 236.3ms. Since the recursive depth R is equal for both
images, we achieved similar results for the proposed method: 190ms to initialise the method,
and 26.2ms for the all nearest neighbour search. The speed-up factor is 9 here.

As a last result, we present an example of using the Hilbert curve to visualise a high-
dimensional data set (Fig. 7). The curve was used both to determine the global arrangement
of the figure, and to compute one of the underlying features.

5 Conclusion

Our method uses the Hilbert curve to compute fast approximate solutions of the all nearest
neighbour problem and the k-nearest neighbour problem in the image plane. Our method has
a precomputation time of O(n) for adapting to a fixed image size. Depending on the problem,
an additional precomputation time of O(C + n) (all nearest neighbours) or O(n lg lgC) (k-
nearest neighbours) is needed to adapt to a certain set of key points. The query time is
then O(1) or O(lg lgC + k), respectively. This is an advantage over a balanced tree (with
runtime lgn) if n > lgC (the latter being a small number for common image formats). Our
experiments show that our method yields a compact and visually meaningful approximation
of the Voronoi diagram in the image plane, which is sufficient for many applications. For
50% of the queries, our method yields the exact result. In a practical example of finding all
nearest neighbours of a set of keypoints, our method was 9–18 times faster than a kd-tree.
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