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Executive Summary

This deliverable of work package WP5 deals with two problems. The first problem consists in how it is
possible to learn and represent new skills in a simple, natural, intuitive and compact manner. The second
problem concerns the possibility of incrementally refine the learned motions to compensate changes in the
environment or errors in the training phase.

Learning by Demonstration (LbD), and in particular kinesthetic teaching, is a popular topic in the robot
learning literature. In the approaches, an expert provides some demonstrations, used to learn a compact
and easy to generalizable representation of the task. More recently, incremental learning algorithms and
their application in robotics scenarios started to be investigated with the growing need to introduce robots
in dynamically changing environments.

The solution developed within SAPHARI consists in combining kinesthetic teaching, batch learning,
incremental learning and a customized kinematic multi-priority control framework. The kinesthetic
teaching approach provides a simple, natural and intuitive to learn and update motion primitives. The
customized interaction controller makes possible the physical interaction with the robot during the motion
execution. The possibility to interrupt or modify the robot motion during the execution gives the user the
possibility to update the motion primitive partially, leaving the rest unchanged. Learning of movements in
the null-space, which do not affect the end-effector motion, is also possible within our framework.

The class of considered problems includes also specific SAPHARI requirements such as smooth
transition between free-space motion and human-robot physical interaction situations, motion primitive
generation, refinement and execution, human-robot competence sharing, and so on. The effectiveness of
our approach is validated on two case studies, namely a point-to-point motion learning and null-space
motion learning. The learned motion primitives can be adopted, for example, in the DLR user case, where
the robot is required to pick and place different tools.

The present work interfaces with the reactive action generation algorithm in WP6. In particular, it
provides the symbolic stochastic models that represent the base for the cognitive multimodal reactive
motion generation of T6.2 in WP6.

IXSAPHAN Page 2 of 10



ICT-287513 SAPHARI Deliverable D5.2.1

Table of contents

EXECUTIVE SUMIMATIY ittt e e e e e et e e et et e e et ettt e ettt et b e bbbt bt st s s s e e seeeeeeeeeaeaeeeeeeseseeeeeensesesenssnnsnnnnnnnnns 2
i Y d oo [0 o1 d o) o FRR PP TPPPPPTP 4
2 Motion primitives learning by demonstration..........ouiiiiiiiiii e 4
3 Incremental motion refinement through kinesthetic teaching ..........ccevvciiiiiiniiii e, 5
4 Task transition control for physical motion refinemMeENt.........ccvviiiiiiiii e 6
R O 1Y AU o 1Y PO PPPPPPPTOE 7

5.1 EXternal forces @StiMatioN . ....uuiiiiiiiiie et e ee e e e et e e e s sbae e e e e sbtaeeeesentreeaeearreeeeeaans 7

5.2 RESUIES eetieiiiieei ittt ettt et e e s ettt e e e e e e e e e s s bt bttt et e e e e e e e e ea b b et taeeeeeeeeeea et bbrataeeeeeeeeean 8
U] =T =T o ol Y-SRI 10

WSAPHAM Page 3 of 10



ICT-287513 SAPHARI Deliverable D5.2.1

1 Introduction

In real applications, the robot is required to execute complex tasks and to adapt his behavior to a dynamic
environment. Skills acquisition and their compact representation as motion primitives, as well as on-line
adaptation of those skills to new scenarios, are of importance both in industrial and service contexts.

The skills acquisition procedure has to be simple, natural and intuitive. In this way new skills can be
easily learned and also non-expert users can teach the robot how to accomplish a certain task. The
possibility of modify the learned motion primitives is also required.

A natural and intuitive way that humans use to teach new skills is kinesthetic teaching, i.e. manually
guide the partner during the task execution. In this document, we propose a novel approach that combines
kinesthetic teaching (physical interaction), batch and incremental learning techniques and a customized
multi-priority kinematic control, the so-called Task Transition Control (TTC). The learning algorithms are
responsible for motion primitive creation and update. The TTC makes possible the physical human-robot
interaction, guaranteeing a proper and safe response to the applied external forces.

Experimental results on a KUKA LWR manipulator show the effectiveness of the proposed approach to
physically teach and refine motion primitives.

2 Motion primitives learning by demonstration

Learning by Demonstration (LbD) is a powerful tool widely used in robotics for acquiring new skills for
robots. LbD has the advantage of learning new skills directly from user demonstrations in a simple and
intuitive way. This makes possible to avoid tedious hand programming of new tasks. Moreover, by the
means of learning algorithms, the skill can be represented in a compact form reducing the amount of data
to store.

LbD works in two steps. Firstly, an expert provides some demonstrations of a task to execute. There
are two main ways to collect these demonstrations. The user can directly drive the robot from an initial
configuration to the desired one (kinesthetic teaching). Or, the user can execute the task himself several
times while some sensors track its motion and collect data. For the experiments presented in this
deliverable, we used kinesthetic teaching to collect tasks demonstrations. Secondly, the demonstrations
are encoded using machine learning algorithms.

Hidden Markov Models (HMM) have been widely used to encode robot’s skills from demonstrations
and to retrieve the desired trajectory. An HMM is described by the set of hidden states S, the set of
observables output symbols O, the initial state probability i1, the state transition probability matrix A and
the observation symbol probability distribution B. The set of learnable parameters is usually indicated with
A =(m, A, B). When, as in this case, the observations o are continuous, a common choice is to represent the
observation probability distribution as a mixture of M Gaussians:

M

Bj(o)=2cjk/v(o,ujk,zjk) .
=1

The HMM parameters A = (i, A, ¢, u, 2) are estimated from training data using a variation of the EM
algorithm, the so-called Baum-Welch algorithm [1]. Once the motion primitive is learned, a smooth
trajectory is generated using Gaussian Regression [2], as detailed in [3]. The results of the learning and
generation procedures are shown in Figure 1.

IXSAPHAN Page 4 of 10



ICT-287513 SAPHARI Deliverable D5.2.1

-0.57 T T T T T T T T T
Demonstrated Traj.

Demonstrated Traj. 02k === Generated Traj.

-0.5751

= Generated Traj.

-0.58

0.1

y [m]

-0.1

-0.21-

-0.31

0.62 I I I I I L I I 04
0 0

5
time [s] time [s]

Demonstrated Traj|
= Generated Traj.
0.04

0.035

I I I I I I
0 1 2 3 4 5 6 7 8 9
time [s]

Figure 1. Motion learning from demonstrations (black lines) and smooth trajectory generation (red line)
using HMM. Top-left: x direction, top-right: y direction, bottom: z direction.

3 Incremental motion refinement through kinesthetic teaching

Real scenarios are, usually, highly dynamic and the requirements for a correct task execution can change
between different executions. Simple examples are changes in the desired final position or the presence of
unforeseen obstacles in the robot work space. Hence, the robot is required to adapt to new scenarios
during the motion execution.

Incremental learning of motion primitives consists in updating the previous knowledge of motion
primitives as new demonstrations are provided, without keeping all the training data in the dataset. We
decide to provide new demonstrations during the task execution by kinesthetic teaching. This has several
advantages:

* The motion refinement procedure is natural and intuitive.
* The user can decide which part of the motion primitive to update, leaving the rest unchanged.

* Null-space motions can be learned without modifying the end-effector task execution thanks to the
proposed customized multi-priority kinematic control (see Section 4).

One of the big limitations of many incremental learning approaches is that they become insensitive to new
data when the data set becomes large. To avoid this behavior, a forgetting factor is used in the learning
algorithm, as suggested in [3].
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The idea is to use just two demonstrations: one is the new demonstration provided by the user, the
other is the smooth trajectory generated from the current motion primitive (see Section 2). A weighting
term w’ for each demonstration is given. For the new demonstration wh = n, where n is the forgetting

factor. For the generated motion trajectory is wi=1- n. The new HMM parameters A =(fc,,2\,6,ﬁ,i)are
updated using the old ones A = (i, A, ¢, i, 2) and the demonstrations as follows:
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where yid(t)is the probability of being in state i at time t for observation sequence od(t), y,‘,’((t) is the
probability of being in state i at time t with the k-th mixture component accounting for the observation
o?(t), T¢ is the time duration of o°(t) and f,.j.'(t) is the probability of being in state i at time t and being in

state j at time t+1 for the sequence o“(t).

4 Task transition control for physical motion refinement

Human intervention is an essential part of the kinesthetic teaching of robots because the dexterity of the
learned skills is limited by the way how human teaches robots. Also, training motions from the human
demonstration eases the painful and time-consuming manual programming works. To realize the
incremental motion refinement by physical contact requires a control framework that allows the robot to
switch between heterogeneous tasks smoothly.

The proposed kinematic control extends the An’s method in [4] to realize smooth transitions between
prioritized tasks. We define a basic task as an unprioritized task that is given before the initial operating
time. The basic task is a set of basic subtasks, which are reference motions for the robot. Stacking and
assigning priorities to an arbitrary number of basic subtasks generates another set, the so-called induced
task. For each induced task, there exists a prioritized inverse solution. We define a prioritized inverse
solution set as a set that contains inverse solutions of all tasks. For the mathematical completion, we may
define a null task that has a zero inverse solution. For example, in this work, the basic subtasks are: the
desired end-effector linear and angular velocities x,, and the interaction control law (an admittance
control that transform the external forces into a desired velocity x,.). Usually, the mapping from the
induced task set to the inverse solution set is surjective because there could be tasks that are equivalent to
each other.

When the task definitions need to be changed during operations, smooth transitions between tasks are
necessary to prevent undesirable discontinuous jumps in the joint trajectories. The existence of kinematic
and algorithmic singularities and consecutive task transitions increase the complexity of the problem. Many
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researches have tried to find a control framework that interpolates the task trajectories for the smooth
task transitions. Our idea is to interpolate the joint trajectories directly by using the barycentric coordinate,
which is a popular way in the computer graphics that parameterize points inside of a convex polytope given
by a set of vertices. There are two main differences in the way we use barycentric coordinates. At first, we
are designing smooth transitions of the barycentric coordinates instead of calculating the coordinates of
points from the vertices. Also, the inverse solutions of tasks will not always form a convex polytope. It could
be a concave polytope or just a set of points in the joint space.

The non-negativity and the linearity properties of the barycentric coordinates give us the boundedness
of inverse solutions, while the smoothness property is for the smooth transitions between tasks and there
could be infinite number of ways to traverse between inverse solutions of tasks. This is a design problem of
coordinates that produces smooth task transitions. Task transitions are triggered by the discrete input
values that correspond to each induced task. For example, in this work, we use a threshold f, to decide to

insert the interaction control task x, as the lower priority task, generating extra null-space motions, and
another threshold f,, to switch the tasks priorities. In other word, the robot firstly tries to project x,_ in its
null-space. If the human perceives that the task is not correctly executed, he simply applies a bigger force
until x,. becomes the first priority task.

Smooth task transitions are guaranteed by a linear dynamical system that transforms the discrete
trigger (system reference) into a continuous signal (system output). The convergence behavior can be
tuned by the stabilizing control gains that do not generate overshoot of the linear dynamic system.

5 Case study

The proposed approach is tested on a KUKA LWR (7 degree-of-freedom) manipulator. The goal is to learn
and incrementally refine a point-to-point motion. In particular, in the experiment the final end-effector
position is gradually updated to match the desired one. In the second experiment, a null-space motion is
learned to avoid an obstacle, without affecting the end-effector motion.

5.1 External forces estimation

The task transition control in Section 4 transforms the external Cartesian force in a desired velocity. Hence,
an estimation of the external Cartesian force applied to the robot is needed. The estimation of the external
force requires to steps. Firstly, the external torquet,, applied in each joint, must be estimated. Secondly,

given the contact point C, the external force f, is computed inverting the well-known equationt, =Jgfe,
where J. is the contact point Jacobian.

Approaches have been already developed to estimate the external torque and the contact link. For
example in [5] a momentum based disturbance observer is used for collision detection and reaction. A
similar approach is used within the SAPHARI project to balance a humanoid robot during kinesthetic
teaching [6]. For the KUKA LWR manipulator, an estimation of the external joint torque is provided at 1 KHz
through the Fast Research Interface [7].

Contact point estimation is still an open problem, also investigated in the SAPHARI project. The
solution provided in WP3 makes use of exteroceptive sensors (RGB-D cameras). Since the estimation of the
contact point is behind the scopes of this document, we simply assume that the contact always occur at the
end of the contact link (identified as in [5]).
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Figure 2. The original goal position is changed on-line using kinesthetic teaching.

5.2 Results

Learn a new goal position — In this experiment we show how the goal position the robot reaches can be
changed online. The robot has to execute the point-to-point motion depicted in Figure 1. During the task
execution, user provides new demonstrations by physically guiding the robot in a new goal position. The
overall procedure is depicted in Figure 2, where the red and pink square indicated the original and new goal
positions respectively. After four iterations, the refined trajectory converges to the new goal, as shown in
Figure 3.

Motion primitive incremental refinement
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Figure 3. The motion primitive is incrementally refined providing new demonstrations. After four iterations
the refined trajectory reaches the new goal position.
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Figure 4. The elbow trajectory is learned on-line to avoid an unforeseen obstacle. The resulting motion is
projected in the Jacobian null-space to not affect the end-effector task.

Learn null-space motions — In this experiment we show how to learn null-space motions using the proposed
approach. As in the previous experiment, the robot has to execute, as a first priority task, the point-to-point
motion in Figure 1. During the execution, user physically moves away the elbow from an unforeseen
obstacle. Having sufficient remaining degree-of-freedom, the elbow motion is correctly executed in the
Jacobian null-space, without affecting the end-effector motion. In this way it is possible to collect some
demonstrations of the null-space task and learn another motion primitive (in this case for the elbow
motion), as shown in Figure 5. Finally, the learned motion primitive can be inserted in the stack of tasks
priorities and executed together with the point-to-point motion.

Elbow motion learning
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Figure 5. Elbow motion learning from demonstrations (black lines) and smooth trajectory generation (red
line) using HMM. The demonstrations are collected physically interacting with the robot during the first
priority task execution.
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