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ExecuƟve Summary
This deliverable ofWP5 deals with the problem of learning force and impedance behaviors. This is a key aspect
in human-robot interacƟon, since an always sƟff (compliant) robot is not able to co-operate with humans in a
safe and profitable manner.

IIT extended the task-parametrized Gaussian mixture model (TP-GMM) proposed in the first part of the
project in order to consider human-robot collaboraƟve tasks. For these tasks, in fact, it is of importance to
adapt the robot impedance in order to effecƟvely co-operate with the human. The probabilisƟc encoding
provided by TP-GMM is used to determine an opƟmal feedback control law that exploits the variability in
posiƟon and force spaces observed during the demonstraƟons. The whole framework allows the robot to
modify its movements as a funcƟon of the parameters of the task, while showing different impedance levels.
Tests were successfully carried out in a scenario where a 7 DOFs backdrivable manipulator learns to cooperate
with a human to transport an object, by generalizing the skill to new iniƟal and target posiƟons.

TUM invesƟgated the possibility of learning posiƟon-dependent impedance from human demonstraƟons.
State of the art approaches for learning variable impedance usually generate a Ɵme-dependent impedance,
and this is not desirable when external perturbaƟon can delay the execuƟon of the task. In the developed
approach consists in learning kinemaƟc aspects of a task using Gaussian mixture models and stable dynamical
systems. The variability in the demonstraƟons, retrieved by Gaussian mixture regression, is then used to learn
variable impedance behaviors, following the idea that the robot has to be sƟff (accurate tracking) when the
demonstraƟons are similar, compliant otherwise.

In redundant manipulators, a compliant (safe) interacƟon with the environment can be achieved in the
robot’s null-space without affecƟng the main task execuƟon. In WP3 UNINA developed a specialized con-
troller, namely the null-space impedance controller, capable to separate end-effector and null-space dynamics
to obtain different impedance behaviors. StarƟng from the null-space impedance controller, TUM developed
a Reinforcement Learning system to learn variable null-space impedance behaviors, with a parƟcular focus on
generaƟng safe movements in case of unexpected collisions. In this system, the robot tries to avoid possible
collision within its null-space. At the same Ɵme, the null-space sƟffness is decreased while approaching the
obstacle to guarantee a safe interacƟon in case of collisions.
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Demonstrations

Reproductions

Figure 1: Experimental seƫng of the human-robot transportaƟon task: (top) kinestheƟc demonstraƟons, and
(boƩom) reproducƟon phase.

1 CollaboraƟve transportaƟon tasks involving force and impedance
behaviors

IIT developed a human-robot collaboraƟve transportaƟon experiment in which a robot manipulator learned
the cooperaƟve behavior from a set of demonstraƟons, which are probabilisƟcally encoded by a task-parametri
zed Gaussian mixture model (TP-GMM) [2]. Preliminary results were reported in [3].

1.1 Task-parameterized model
Task-parameterized models of movements refer to representaƟons that can automaƟcally adapt to a set of
external task parameters. The task parameters refer here to the variables that can be collected by the system
and that describe a situaƟon, such as posiƟons of objects in the environment or landmark points. The task
parameters can in some cases be fixed during an execuƟon trial, or they can vary while the moƟon is executed.
The model parameters refer to the variables learned by the system, namely, that are stored in memory (the
internal representaƟon of the movement). During reproducƟon, the new set of task parameters (descripƟon
of the present situaƟon) is combined with the model parameters (informaƟon about the skill) to produce a
movement that is not necessary the same as the demonstraƟons (e.g., adaptaƟon to new posiƟons of objects
aŌer having observed the skill in a different situaƟon).

The retrieval of movements from the model parameters and the task parameters is most oŌen viewed as
a regression problem. This generality might look appealing at first sight, but it also strongly limits and bounds
the generalizaƟon scope of these models (mostly interpolaƟon). We showed in [1] that a promising trend in
this last category is to exploit the funcƟonal nature of the task parameters to build models that can learn the
local structures of the task from a low number of demonstraƟons.

This new approach to task-parametrized models comes from the observaƟon that most of the task pa-
rameters can be related to some form of frames of reference, coordinate systems or basis funcƟons, whose
structure can be exploited to speed up learning and provide the system with extrapolaƟon capability.

In order to be exploited by a wide range of learning approaches, the proposed model relies on mixtures
of Gaussians as core representaƟon. It provides a compact encoding scheme that is also beneficial for storage
and stochasƟc opƟmizaƟon purposes. The task parameters are represented in the general form of coordinate
systems, with an origin b (offset vector) and axes concatenated in a matrixA. Note that there is no constraint
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on the length and orthogonality of the axes, and that {A, b} can thus represent any linear transformaƟon.
A simple example of task parameterizaƟon is to set b as the Cartesian posiƟon of an object, and A as the
orientaƟon of the object as a direcƟon cosine matrix (rotaƟon matrix).

The demonstraƟons of a movement/force are simultaneously collected in different coordinate systems.
In other words, the same movement is monitored from the perspecƟve of several observers. With mulƟple
demonstraƟons of the same task or the same category of movements, the variability and correlaƟon infor-
maƟon can differ depending on the coordinate system being considered. Typically, the invariant paƩerns will
change during the course of the movement, with transiƟons between objects, coordinate systems and/or hi-
erarchy constraints.

AŌer training themodel, themodel parameters for amixture ofK components and forP reference frames
are described by {πi, {µ(j)

i ,Σ
(j)
i }Pj=1}Ki=1 (πi are the mixing coefficients, µ(j)

i and Σ
(j)
i are the center and

covariance matrix of the i-th Gaussian component in frame j). During reproducƟon, at each Ɵme step t, the
present situaƟon (e.g. locaƟon of objects) is characterized by the set of reference frames (coordinate systems)
{bt,j ,At,j}Pj=1, which is used to evaluate the product of linearly transformed Gaussians

N (µt,i,Σt,i) ∝
P∏

j=1

N
(
At,jµ

(j)
i +bt,j , At,jΣ

(j)
i A⊤

t,j

)
. (1)

The above equaƟon results in a temporary GMM with parameters {πi,µt,i,Σt,i}Ki=1 that is adapted to
the current situaƟon, and that can be used to synthesize a new movement. This can for example be done by
combining the TP-GMM approach with a regression approach based on Gaussian mixture regression (GMR),
see [2] for details. Such approach does not only retrieve a trajectory: it also retrieves an esƟmate of the vari-
aƟons and correlaƟons of the movement/force in the form of a full covariance modeling the output variables,
re-esƟmated at each Ɵme step.

1.2 Minimal intervenƟon controller
Similarly as the soluƟon proposed by Medina et al. in the context of risk-sensiƟve control for hapƟc assistance
[4], the predicted variability can be exploited to form a minimal intervenƟon controller [5].

We define the state of the robot as ζ = [x⊤ ẋ⊤ f⊤ ]⊤, withx, ẋ and f are the posiƟon, velocity and sensed
force of the robot. We define the inputs of the system as the vector ν = [u⊤ v⊤ ]⊤, where v represents an
external input related to the interacƟon of the human with the robot during the cooperaƟve task, and u is the
control input expressed as

u = −
[
KP KV KF ]  x̃

˜̇x

f̃

 , (2)

where x̃ = (x− x̄), ˜̇x = (ẋ− ¯̇x) and f̃ =
(
f − f̄

)
, with ζ̄ = [x̄⊤, ¯̇x⊤, f̄

⊤
]⊤ esƟmated by GMR. KP , KV

andKF are full sƟffness, damping and force gain matrices, respecƟvely.
The state space representaƟon of the robot in task space can be wriƩen as1

ζ̇ =

A︷ ︸︸ ︷0 I 0
0 0 I
0 0 0

 ζ +

B︷ ︸︸ ︷0 0
I 0
0 I

ν, (3)

1A andB arematrices defining the dynamical system, not to be confoundedwith theAt,j and bt,j defining the coordinate systems
in the TP-GMM.
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namely d
dtx = ẋ, d

dt ẋ = u+ f , and d
dtf = v. Note that the laƩer equaƟon indicates that the variaƟon of the

sensed forces depends on the external input v, in other words, the physical interacƟon between the human
and the robot directly influences the variaƟon of the robot’s force percepƟon. Lastly, we denote the column
space of the input matrix beingB = [B1 B2].

Once the reference posiƟon, velocity and force profiles are retrieved by the TP-GMM at a given Ɵme step,
the controller gains can be esƟmated by following an opƟmal control strategy. OpƟmal feedback controllers
allow the robot to plan a feedback control law tracking the desired state. The problem is stated as finding the
opƟmal input ν that minimizes the cost

Jt =

∞∑
n=t

(ζn − ζ̄t)
⊤Qt(ζn − ζ̄t) + ν⊤

nRt νn, (4)

where ζ̄t represents the reference or desired state obtained by GMR,while thematricesQt andRt areweight-
ing variables that determine the proporƟon in which the tracking errors and control inputs affect the mini-
mizaƟon problem. The aforemenƟoned problem is known as an infinite horizon linear quadraƟc regulator.
The novel use of the above cost is that we exploit the variability observed during the demonstraƟons to adapt
on-the-fly the error costs in (4). Specifically, we define

Qt = Σ̂
−1
t , Rt =

[
Ru

t 0
0 Rv

t

]
, (5)

using the covariances Σ̂t retrieved by GMR. In our experiment,Rt is defined as a diagonal matrix.
This cost is updated at each Ɵme step t, and is then used for compuƟng the next control command. This

formulaƟon is beƩer suited for interacƟons in weakly structured environments, where the robot acƟons might
depend on the state and/or acƟons of its human counterpart, and the state of the environment. Technically,
finite-horizon requires the recursive computaƟon of an ordinary differenƟal equaƟon, which is beƩer suited
for planning situaƟons in which the candidate frames are not expected tomove. In constrast, our minimizaƟon
problem can be solved through the algebraic RiccaƟ equaƟon, providing an opƟmal feedback controller in the
form of (2) with full sƟffness, damping and force gain matrices.

Specifically, the LQR soluƟon for our problem is represented by

νt = R−1
t B⊤ [−St( ζt − ζ̄t )+dt] , (6)

where the robot controller is obtained as

ut = Ru−1

t B⊤
1

[
−St

(
ζt − ζ̄t

)
+ dt

]
, (7)

with St and dt as soluƟons of the equaƟons

A⊤St+Qt+StA−StBR−1
t B⊤St = 0, (8)

−A⊤dt+StAζt+StBR−1
t B⊤dt−Stζ̇t = 0, (9)

andB1 belonging to the column space ofB, as specified previously. In the above, dt is the feedforward term
(which can opƟonally be neglected for low dynamic movements). The soluƟon for ut provides opƟmal feed-
back gainsKP ,KV andKF , which allow the robot to opƟmally track its desired state during the cooperaƟve
task, shaping the robot’s impedance level according to the invariant characterisƟcs of the demonstraƟons.

1.3 Experimental results
The experiment consists of teaching a robot to simultaneously handle posiƟon and force constraints arising
when a human and a robot cooperaƟvely manipulate/transport an object (see Fig. 1). At the beginning of the
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Figure 2: Profiles of the esƟmated sƟffness, damping and force gain matrices along a reproducƟon of the
cooperaƟve transportaƟon. Only their diagonal values are ploƩed.

transportaƟon task, two parƟcipants simultaneously reach for the object. Once they make contact with the
load, they start jointly transporƟng the object along a bell-shaped path to reach the target locaƟon. When the
object gets to the final posiƟon, the two persons release it and move away from it. Note that both the iniƟal
and goal object posiƟon/orientaƟon may vary across repeƟƟons. The aim is to introduce a robot into such a
task by replacing one of the human parƟcipants by the robot.

We used a torque-controlled 7 DOFs WAM robot endowed with a 6-axis force/torque sensor. The robot’s
controller is defined by (2). In the demonstraƟon phase, the gravity-compensated robot is kinestheƟcally
guided by the teacher while cooperaƟvely achieving the task with the other human partner, as shown in Fig-
ure 1. The teacher shows the robot both the path to be followed and the force paƩern it should use while
transporƟng the load.

Two candidate coordinate systems (P = 2) are considered, namely, the frames represenƟng the iniƟal and
target locaƟons of the object. During reproducƟon, the iniƟal and target frames are given to the model. At
each Ɵme step t, the robot obtains an updated reference state ζ̄ along with opƟmal sƟffness, damping and
force gain matrices, that generate a new desired acceleraƟon in the operaƟonal space of the robot.

Figure 2 shows howKP ,KV andKF vary over Ɵme along one of the reproducƟons, withRt = rI6×6

and r= 0.01. NoƟce that at the beginning and at the end of the reproducƟon, the robot behaves less sƟffly
along the x axis, while being sƟffer along the axes y and z. The robot does not allow high variaƟons on the
plane yz, guaranteeing that the object is picked up and released by passing through paths that are consistent
with the demonstraƟons. In contrast, as expected, when the human-robot dyad is cooperaƟvely transporƟng
the loadwith a bell-shaped path, the robot behaves sƟffly along x, while allowing some deviaƟons on the plane
yz.

The proposed approach brings together the advantages of probabilisƟc encoding and robustness of opƟmal
control. In the proposed experiment, this allowed the robot to (i) automaƟcally extract the constraints of the
task from demonstraƟons (in both posiƟon and force spaces), and (ii) exploit the observed variability to obtain
an opƟmal feedback law that accordingly shapes the robot impedance along the reproducƟon of the task.

Here, the proposed model was used to learn a Ɵme-driven robot moƟon. We plan in future work to avoid
this explicit Ɵme dependency by taking advantage ofmethods that also encapsulate the sequenƟal informaƟon
of the task, such as in hiddenMarkovmodels. Moreover, wewill explore the inclusion of the state of the human
into the loop, so that the robot could cope with a wider range of perturbaƟons based on the user’s acƟons.

2 Learning MoƟon and Impedance Behaviors from Human Demon-
straƟons

TUM developed an approach to learn state-dependent sƟffness form human demonstraƟons [10]. For many
tasks, infact, a state-varying, Ɵme independent impedance behavior is desirable, being more robust to delays
in the execuƟon of the task. Indeed, a Ɵme-varying sƟffness can fail to provide adequate impedance behaviors
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at the right Ɵme and in the right place when the execuƟon Ɵme changes. Our approach consists in learning a
state-dependent sƟffness exploring the variability of human demonstraƟons.

In this secƟon we firstly underline some important concepts concerning the SEDS algorithm [6], used to
train a moƟon primiƟve in the form of a globally asymptoƟcally stable (GAS) DS. Secondly, we explain how the
sƟffness is esƟmated from Gaussian regression. SimulaƟon results are provided to show the effecƟveness of
the proposed approach.

2.1 Learning stable moƟon primiƟves
We assume that the set of N demonstraƟons {xt,n, ẋt,n}T ,N

t=0,n=1, where x ∈ Rd is the posiƟon and ẋ ∈ Rd

the velocity, are instances of a first order, nonlinear DS in the form:

ẋ = f(x) + η , (10)

wheref(x) : Rd → Rd is a nonlinear conƟnuous funcƟonwith a unique equilibriumpoint in ẋ∗ = f(x∗) = 0,
and η ∈ Rd is a zero mean Gaussian noise. Having the noise distribuƟon a zero mean it is possible to use
regression to esƟmate the noise-free model ẋ = f̂(x).

To esƟmate the noise-free DS, a probabilisƟc framework is used that models f̂ as a finite mixture of Gaus-
sian funcƟons. Therefore, the nonlinear funcƟon f̂ is parametrized by the priors P(k) = πk, the means µk

and the covariance matricesΣk of the k = 1, . . . ,K Gaussian funcƟons. The means and covariance matrices
are defined by:

µk =

[
µk
x

µk
ẋ

]
, Σk =

[
Σk

x Σk
xẋ

Σk
ẋx Σk

ẋ

]
. (11)

A probability density funcƟon P(xt,n, ẋt,n;Θ), whereΘ = [θ1, . . . ,θK ] and θk = [πk,µk,Σk], is asso-
ciated to each point in the demonstrated trajectories:

P(xt,n, ẋt,n|Θ) =

K∑
k=1

πkN (xt,n, ẋt,n|µk,Σk) . (12)

Taking the posterior mean probability P(ẋ|x) as an esƟmaƟon of f̂ yields [7]:

ẋ = f̂(x) =
K∑
k=1

hk(x)(Akx+ bk) , (13)

where:

Ak = Σk
ẋx(Σ

k
x)

−1

bk = µk
ẋ −Akµk

x

hk(x) =
πkN (x|µk

x,Σ
k
x)∑K

i=1 π
iN (x|µi

x,Σ
i
x)

.

(14)

The nonlinear funcƟon f̂ is then expressed as a nonlinear sum of linear dynamical systems. To guarantee
that the DS in Eq. (13) has a GAS equilibrium in x∗, the parametersΘ can be esƟmated solving the following
opƟmizaƟon problem [6]:

min
Θ

J(Θ) = −
N∑

n=1

T∑
t=0

logP(xt,n, ẋt,n|Θ)
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subject to
bk = −Akx∗

Ak negaƟve definite

Σk posiƟve definite

0 ≤ πk ≤ 1

K∑
k=1

πk = 1


∀k ∈ 1, . . . ,K (15)

where P(xt,n, ẋt,n|Θ) is defined in Eq. (12).

2.2 Learning variable sƟffness
The probabilisƟc framework described in Sec. 2.1 can be also used to retrieve an esƟmaƟon of the sƟffness
for each posiƟon, following the principle that the robot must be sƟff where demonstraƟons are similar and
compliant otherwise. The variability of the demonstraƟons, at the posiƟon level2, is captured by the mixture
regression in the covariance matrices Σk

x (Eq. (11)). Given the current robot posiƟon x we calculate the
covariance matrix:

Σ̂x =
K∑
k=1

(hk(x))2Σk
x , (16)

where hk(x) is defined in Eq. (14). In pracƟse, we weight the contribuƟon of each matrix using the responsi-
bility hk(x) that each Gaussian has in x. The computed covariance matrix is symmetric and posiƟve definite.
Hence, we are allowed to calculate its eigenvalues decomposiƟon:

Σ̂x = EΛE−1 , (17)

where E is the matrix of the eigenvectors (principal direcƟons) and Λ = diag(λ1, . . . , λd) is the diagonal
matrix of the eigenvalues.

The root square of the eigenvalues of Σ̂x, σi =
√
λi, represents the variability (standard deviaƟon) of the

data along each direcƟon. We propose to construct the sƟffness saving the principal direcƟons of Σ̂x, choosing
the eigenvalues inversely proporƟonal to σi. The sƟffness matrix can be wriƩen as:

K = ESE−1 , (18)

whereS = diag(s1, . . . , sd). Between the eigenvalues si of the sƟffness matrix and σi the following nonlinear
inverse relaƟonship holds:

si(σi) =


smin σi > σmax

p1 (1− tanh (p2)) + smin σmin ≤ σi ≤ σmax

smax σi < σmin

(19)

where
p1 =

smax − smin

2
, p2 =

2k0
smax

(
σi − σmax − σmin

2

)
. (20)

The sƟffness values in each direcƟon are bounded by the tunable parameters smin and smax. The param-
eters σmin and σmin are also tunable parameters for the learning system. The nonlinear relaƟonship in Eq.

2The variability at the velocity level, or between posiƟon and velocity is not taken into account. We claim, in fact, that the user can
hardly take into account these kinds of variability while he performs the demonstraƟons.
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(19), (20) is shown in Fig. 3. There are two saturaƟon areas corresponding to σi > σmax and σi < σmin

where the eigenvalues assume the values smin and smax respecƟvely. Among them there is an almost linear
area in which si is inversely proporƟonal to σi. The size of the saturaƟon areas and, consequently, the slope
of the linear part can be modulated by varying k0. To avoid rapid changes in the sƟffness values, the adopted
funcƟon guarantees a smooth transiƟon between the linear area and the saturaƟon ones.

Figure 3: Nonlinear relaƟonship between covariance and sƟffness matrices eigenvalues.

2.3 Control law
We assume that our robot can be controlled by an impedance control law (torque feedback) [8]. Given the
desired velocity, posiƟon and sƟffness, the following control law realizes the desired moƟon-impedance be-
havior:

τ = JTF + n(q, q̇, q̈) , (21)

where τ is the input torque, J is the Jacobian of the manipulator and n(q, q̇, q̈) compensates the nonlineari-
Ɵes in the dynamical model of the robot.

The force term F is chosen as:
F = Kx+Dẋ , (22)

where K is the state-dependent sƟffness matrix in Eq. (18), ẋ is the velocity computed in Eq. (13) and x is
obtained integraƟng ẋ. The damping matrixD is chosen to have the same eigenvectors (principal direcƟons)
of the sƟffness matrix (Eq. (18)) with eigenvalues di = 2

√
si, i = 1, . . . , d. Being the DS in Eq. (13) globally

asymptoƟcally stable andK,D posiƟve definite, the force term drives the robot towards the desired posiƟon
imposing a state dependent impedance behavior.

2.4 SimulaƟon Results
In this secƟon we validate the effecƟveness of our approach in two cases. The first simulaƟon is used to show
how the task constraints are learned from demonstraƟons. SyntheƟc 2-dimensional data are used. In the
second experiment, a point-to-point task is learned from demonstraƟons.

Learning task constraints

In this simulaƟon we generate three 2-dimensional posiƟon trajectories3 that are constrained at the beginning
and at the end of the moƟon. The trajectories start almost idenƟcal, exhibit variaƟons and end again idenƟcal.

3The velocity is computed by numerical differenƟaƟon.
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Figure 4: Results of the learning algorithmon the syntheƟc dataset. (a) DemontraƟons (black lines) and learned
model. (b) Smooth moƟon retrieved using GMR and related covariance matrix Σ̂x. (c) Learned sƟffness.

The results obtained learning the DS in Eq. (13) with three Gaussian components are shown in Fig. 4. As
expected, the algorithm is able to detect constraints in the demonstraƟons and to return coherent values in
terms of posiƟon and sƟffness. The covariance matrices Σk

x, k = 1, . . . , 3 are represented as ellipses in Fig.
4(a), where the dimension of each axis of the ellipse is proporƟonal to the standard deviaƟon in that direcƟon.
The two covariance matrices close to the constrained areas have a small variance, while the other has a big
variance. As a results, the covariance matrix Σ̂x, computed by the regression technique in Sec. 2.2 , has a
small standard deviaƟon for points close to the constrained areas, big otherwise (Fig. 4(b)). Conversely, the
learned sƟffness is big where the moƟon is constrained and small otherwise (Fig. 4(c)).

Point-to-point moƟon

In this simulaƟon we learn a point-to-point moƟon task from human demonstraƟons. The data, collected by
kinestheƟc teaching, are shown in Fig. 5(a). The demonstraƟons have high variability at the beginning of the
moƟon, while they converge to the goal posiƟon at the end.

Again, the learning algorithm is able to capture this variability. The two learned covariance matrices
Σk

x, k = 1, 2 are represented as ellipsoids in Fig. 5(a), where the dimension of each axis of the ellipsoid
is proporƟonal to the standard deviaƟon in that direcƟon. The covariance matrix closer to the iniƟal points
in the trajectories has bigger covariance than the other, being the variability at the beginning of the moƟon
considerably bigger. The generated moƟon, obtained integraƟng the learned DS velocity with a sample Ɵme
δt = 0.01s, is shown in Fig. 5(b). As expected, the trajectory converges to the goal posiƟon, being the learned
DS globally asymptoƟcally stable. Figure 5(c) shows the eigenvalues of the covariance matrix Σ̂x. The eigen-
values have big values at the beginning of the moƟon (high variability) and decrease while the trajectory con-
verges to the goal posiƟon (low variability). Conversely, the learned sƟffness matrix eigenvalues in Fig. 5(d)
are small at the beginning of the moƟon (high variability) and increase while the trajectory converges to the
goal posiƟon (low variability). The eigenvalues in Fig. 5(d) are obtained firstly scaling the standard deviaƟon
along each direcƟon, i.e. the square root σi of the eigenvalues of Σ̂x, in the interval [σmin = 1, σmax = 4]
and then applying the inverse relaƟonship in Eq. (19) with [smin = 0, smax = 1].

The learned DS and sƟffness are then used to generate the impedance behavior in Eq. (21)-(22). To this
end, we used a dynamic simulator of a KUKA lightweight 7 degree-of-freedom robot [9]. The manipulator
end-effector is driven by the learned DS to reach the target posiƟon g = [−0.6 0.18 0.25]m (the orientaƟon
is kept constant), starƟng from x(0) = [−0.56 − 0.42 0.22] m. The sƟffness eigenvalues range is chosen as
[smin = 50, smax = 300], while the sample Ɵme is chosen as δt = 1ms. For comparison, the same DS is used
to drive the robot with a constant sƟffnessK = diag(300, 300, 300).

Firstly, we compare the end-effector posiƟon error between the executed trajectory and the generated
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Figure 5: Results of the learning algorithm on the point-to-point moƟon dataset. (a) DemontraƟons (black
lines) and learned model. (b) Smooth moƟon retrieved using GMR. (c) Eigenvalues of the covariance matrix
Σ̂x for the generated moƟon. (d) Eigenvalues of the sƟffness matrix, normalized to 1.

(integraƟng the DS) one. As expected, the robot is able to reach the target both with constant and variable
sƟffness (see Fig. 6). With constant high sƟffness, the robot stays significantly closer to the reference trajectory.
Hence, as already menƟoned, if the goal is an accurate tracking an high sƟffness is required.

Secondly, we test the proposed approach when a collision occurs. To simulate a collision, an impulsive
external force f = [20 0 0]N is applied for 5ms starƟng at t = 0.5s. As shown in Fig. 7, when the robot has a
small sƟffness, the external force generates a big deviaƟon from the reference trajectory. In this case, in fact,
the robot accomplish the applied force. Instead, with high sƟffness, the robot generates higher acceleraƟons
at the end-effector to suddenly react to the external disturbance. This results in a considerably smaller devi-
aƟon, but into a possibly dangerous behavior. Hence, the learned behavior guarantees a compliant and safe
interacƟon with the environment in a certain area of the state space (unƟl a certain distance from the target).
The high sƟffness close to the target point guarantees instead to reach and keep the desired final posiƟon.

3 Learning null-space impedance behaviors
For redundantmanipulators, it possible to obtain different impedance behaviors at the end-effector and on the
robot body. TUM invesƟgated the possibility to learn safe null-space impedance behaviors [11], i.e. moƟons
that can guarantee a compliant interacƟon with the environment without affecƟng the end-effector task.

In this secƟon, we firstly describe the main aspects of the null-space impedance control developed by
UNINA inWP3 and refer to [12] for further details. Secondly, we describe the proposed Reinforcement Learning
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Figure 6: Norm of the end-effector posiƟon error with constant (blue dashed line) and variable (black solid
line) sƟffness.
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Figure 7: End-effector posiƟon and acceleraƟon when an impulsive force of 20N is applied along the x1
direcƟon. To clearly show the effects of the applied force, only the x1 axis (the most affected) and the first
1.5s of the trajectory are considered.

(RL) based sƟffness to learn a variable null-space sƟffness and present experimental results.

3.1 Null-space impedance control
Robot’s redundancy can be solved at the acceleraƟon level using the well-known equaƟon:

q̈ = J†(ẍc − J̇ q̇) +Nq̈ns , (23)

where q is the measured joint posiƟon, ẍc is the commanded end-effector acceleraƟon, q̈ns is the desired
null-space acceleraƟon, J is the Jacobian matrix, J† is the Jacobian pseudo-inverse and N project q̈d in the
null-space of J . The commanded end-effector acceleraƟon can be chosen according to the impedance law:

ẍc = ẍd +Dee(ẋd − ẋ) +Kee(xd − x) , (24)

wherex is themeasured posiƟon, xd the desired posiƟon,Dee andKee are the damping and sƟffnessmatrices
respecƟvely. The desired null-space acceleraƟon can be chosen as:

q̈ns = q̈d +M−1(Dns(q̇d − q̇) +Kns(qd − q)− τ ext) , (25)

whereM is the inerƟa matrix of the manipulator and τ ext the applied external torque.
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With this choices, the task-space dynamics are decoupled from the null-space dynamics at acceleraƟon
level [12]. Then, by properly choosing Kee,Kns,Dee and Dns, we can have a compliant behavior of the
robot body while ensuring a precise end-effector task execuƟon.

3.2 Reinforcement learning of null-space sƟffness
Reinforcement Learning (RL) is one of themost used approach to increase robot’s abiliƟes by self-pracƟce. RL is
a trial and error process in which the robot explores the environment and its own body. The goal of RL is spec-
ified by the reward funcƟon, which acts as posiƟve reinforcement or negaƟve punishment depending on the
performance of the robot with respect to the desired goal. The reward funcƟon is defined by the user accord-
ing to the parƟcular task. We developed a RL based system capable to modify the learnedmoƟon primiƟves in
order to avoid possible collisions. At the same Ɵme, null-space sƟffness is decreased in the neighborhood of
the obstacle to guarantee a safe (compliant) interacƟon when it is not possible to avoid collisions. In this work,
we used the policy learning by weighƟng exploraƟon with the return (PoWER) RL algorithm proposed in [14].

MoƟon primiƟves are encoded using a second order dynamical system, namely the Dynamic Movement
PrimiƟves (DMP) [13]: 

τ ẏ = z

τ ż = α(β(g − y)− z) + f(s)

ṡ = −γs

(26)

where y is the posiƟon, g is the target posiƟon, τ is a scaling factor, the non-linear forcing term f(s) is usually
a weighted summaƟon of Gaussian basis funcƟon. The addiƟonal state s converges to zero (γ > 0) and
guarantees the converges of y to g (f(s) → 0 if s → 0). The forcing term f(s) can be represented as:

f(s) = gtra(s)
T (θtra + ϵtra) , (27)

where g(s) are the Gaussian basis funcƟons, θtra are the policy parameters (weights) updated by RL, and ϵtra
is the exploraƟon noise. To update the sƟffness, we assume that the sƟffness dynamics is regulated by the first
order DS:

K̇ns = γsti(gsti(s)
T (θsti + ϵsti)−Kns) , (28)

whereKns = diag(kx, ky, kz) is the null-space sƟffnessmatrix (diagonal) and γsti is a tunable gain. The other
quanƟƟes have the same definiƟon of those in Eq. 27.

Being our goal to avoid collisions in the null-space while reducing the robot’s body sƟffness close to the
obstacle, we propose the following reward funcƟon:{

r = w1 exp(−∥p− pd∥) d ≥ ds ,

r = −w1 exp(−d)− w2(kx + ky + kz) d < ds
(29)

where d is the robot-obstacle distance, ds is a safety distance, p is the points of the robot closest to the obstacle,
pd is the desired posiƟon of p, ki are the entries of the sƟffness matrix, and w1 and w2 are tunable weights.

3.3 Results
Experiments are conducted on a KUKA LWR4+ 7 DoF manipulator [9]. An obstacle is puƩed along the robot’s
elbow trajectory in such a way that the collision cannot be avoided in the null-sapce (see Figure 8). By using
a constant sƟffness (red solid line in Figure ) the robot hardly collide with the environment affecƟng also the
end-effector task execuƟon (see Figure ). Instead, with the learned variable sƟffness (red solid line in Figure
), a smooth interacƟon with the environment is achieved with a resulƟng beƩer execuƟon of the end-effector
task (see Figure ).
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Figure 8: Robot’s elbow collide with an obstacle: (leŌ) end-effector task starts, (middle) collision, (right)
a compliant behaviour is generated in the null-space to guarantee smooth interacƟon and end-effector task
execuƟon.
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