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Executive Summary

This deliverable of WP6 deals with the problem of multimodal reactive motion generation, considering not
only trajectories of motion but also force and impedance patterns. This is a key aspect in all the tasks that
require the robot to physically interact with the environment.

TUM improved the dynamical system (DS) modulation technique for reactive collision avoidance to guaran-
tee the Lyapunov stability of the modulated DS. The original formulation, in fact, do not consider a full stability
analysis of the modulated dynamical system. Despite it is possible to show that the equilibrium points of the
modulated DS are not affected by the modulation matrix, the presence of periodic orbits cannot be excluded.
The stability, as well as the avoidance of possible obstacles, are guaranteed in our novel formulation by a cus-
tomized control input computed solving a constrained optimization problem. Indeed, stability and collision
avoidance are considered as constraints of the optimization problem for which an analytical solution exists.
Hence, the algorithm can be implemented and applied in real-time. Preliminary simulation results show the
effectiveness of the proposed approach.

Regarding force and impedance patterns generation, TUM proposed a novel approach, based on reinforce-
ment learning (RL), to learn impedance behaviors by robot self practise. The proposed approach combines the
benefits of two state-of-the-art approaches, giving the possibility to learn full stiffness matrices. Hence, the
novel approach takes into account the interdependency among different degrees-of-freedom (or different di-
rections in the Cartesian space). Moreover, the external applied torque is explicitly considered in the reward
function and minimized during the learning procedure. The effectiveness of the proposed approach is demon-
strated with an experiment on a 7 degrees-of-freedom KUKA LWR IV+ manipulator.
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1 Optimal modulation of dynamical systems

In the first period of the project TUM developed a reactive collision avoidance algorithm, namely the distance-
based Dynamical System (DS) modulation, capable to locally modify the dynamics of a first order system to
avoid possible collisions with fixed [1] and moving obstacles [2]. The algorithm extends the preliminary work
in [B] to the case of obstacles represented as point clouds. A suitable Modulation Matrix M (p) is used to mod-
ulate the DS, i.e. p = M (p) f(p), where p represents the current robot position. The modulation does not
affect the equilibrium points of the modulated DS and it guarantees the obstacle surface will not be penetrated

during the motion.

The modulation matrix depends on the state (position) of the modulated DS. The state dependency of the
modulation matrix makes the modulated DS non-linear also if f is linear. In general, non-linear systems are
not always guaranteed to reach their equilibria, also when those equilibrium points are stable. As an example,
consider the linear time invariant system:

82 1 1
p=Ap=|-45 -3 0 |p (1)
0 83 53

that has a globally asymptotically stable (GAS) equilibrium at the origin (the eigenvalues of A are all negative).
Putting a spherical object of radius » = 0.1, centered at ¢ = [0.2 0.01 0.1], the modulated system follows a
periodic orbit without converging to the equilibrium (see Figure f(a)).

3D Trajectory 3D Trajectory

(a) DS Modulation (b) Optimal DS Modulation

Figure 1: (a) The modulated system follows a periodic orbit without converging to the equilibrium point. (b)
The optimization of the modulated velocity guarantees the convergence to the equilibrium point.

1.1 Modulated Velocity Optimization

TUM proposes an approach to avoid the robot follows unexpected periodic trajectories, by computing a suit-
able velocity solving a constrained optimization problem. Let us assume that the autonomous system p =
f(p) has a globally asymptotically stable (GAS) equilibrium p, and let’s call V¢ (p) a Lyapunov function for that
system. A velocity f’ that guarantees the convergence to the goal and the impenetrability can be calculated
solving the following optimization problem:

) 1
min S|f — MfIP

f/

s. t. Vf =VVif' < —v,7>0,70)=0 2)
V=0, p=p
Al f =0, Vp
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where the first two constraints guarantee that p is GAS. The third equality constraint is the impenetrability
condition, i.e. the normal component of the velocity vanishes on the obstacle surface.

Assuming that f' = M f + wu, the equality constraint in (@) can be satisfied putting alu =0, Vp. The
function (p) is chosen asll v(p) = min(y1,a(l — e*prH)), ~v1 > 0, where a and b are tunable parameters.
Hence, v(p) is positive definite and it vanishes only at the origin. The maximum value of v(p) is bounded to
71 to avoid that, far from the equilibrium (||p|| > 0), a big w (||u|| > 0) is required to satisfy V;(p) < —v(p).
Under those assumptions, the Karush-Kuhn-Tucker (KKT) conditions for the optimization problem in (@) can be
written as:
u+pu(VV)T +6n =0
VVfU < =y - VVfo

w(VVif +v) =0 (3)
vvff/ = Oa P = f)
nfu=0

Solving the system of KKT conditions (B) it is possible to compute the optimal solution uw* of (). It is straight-
forward to verify that the optimal control input «u* can be expressed as:

- Mf pP=p
u'=<0 Vf < —y
—u(VVp)T —sn  otherwise

(4)

where
Y+ VVIMf — (VVia) (A" Mf)
a IVVi[2 = [VVinl? (5)
s=n"Mf - uvvin
As shown in Figure fll(b), the computed optimal control input is able to drive the robot toward the goal position
while avoiding possible collisions.

2 Reinforcement learning of impedance behaviors

TUM extended the standard? PI2 to learn couplings between joints (full stiffness matrices) rather than gain
schedules for each joint individually as in [6]. The benefits of taking into account such coupling information in
off-diagonal elements of stiffness matrices have been highlighted in several research works [7—-9] which imply
that the association of full stiffness matrices enables to learn synergies, coordination and couplings in motor
control. A further novel idea TUM proposed is to consider external force-torque sensing as learning stimuli
in the reward function of the RL algorithm. This idea allows to compensate for unknown contact forces and
instability in a human-like manner [10] by increasing contact forces trial after trial until a primary task goal can
be accomplished, e.g. the minimization of positional deviations imposed by interaction disturbances, which is
also defined in the reward function.

'When the DS has a GAS equilibrium in p # 0 we simply chose v(p) = min(y1,a(1 — e *IIP=PI)),
2Compared to other approaches, like Policy learning by Weighting Exploration with the Returns (PoWER) [B], PI? has no limitation
on the choice of the reward function.
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2.1 Correlated Dynamic Movement Primitives (DMPs)

In Correlated DMPs [11]], training data are given in terms of end-effector position x € R™, velocity ; € R™
and acceleration &; € R™, and the desired acceleration command z; 4 € R™ is generated as:

P
Tiqg= Z i [K;D(ILJX —xy) — ’ivibt} (6)
j=1

The dynamical system in (B) can be considered as a spring-damper system with attractor vectors uj( € R™, full
stiffness matrices (i.e. coordination matrices) K;-) € R™*™ and damping gain k¥ € R. The attractor vectors

P
{uj(} and full coordination matrices {Kf }5_1 are learnable policy parameters. In order to reproduce a
j=1 =
desired path @y, 4, T¢, 4, ¢, ¢ € R™ ineachtimestept;, ¢ =0,1,..., N — 1, the trajectory can be computed

by summarizing the weighted attractor points over all basis functions to

P
Tra =) hu by (7)
j=1
with temporal weighting basis functions
P,
I=1 1/)751‘71

composed of equally in time distributed Gaussians ./\/'(,u;r, EJT) with centers ,u;r and variances EJT. The Gaus-
sians are activated by the canonical system

1 In(vy,
*Dti = —Quly; — t, = — (th)
-

(9)

ayT

where the time constant a,, and the temporal scaling factor 7 determine the movement duration. v is set to
¢ = 1toinitiate the movement and then converges to zero. Accordingly, the temporal varying stiffness matrix
KE can be estimated by

p
K[ => hy, ;K7 (10)
j=1
to generate the PD motor command

14

iti,d = Kz(a:ti,d - mti) -k ¢ti . (11)

2.2 Coordination Policy Improvement with Path Integrals (C-PI?)

Previous approaches to learn DMP parameters through PI> have considered each DoF independently, thus the
motor control variable of each joint or task space dimension is estimated individually. In order to addition-
ally learn the couplings between motor control variables, the PI? algorithm must be viewed from a different
perspective.

A trajectory can be learned by parameterizing the attractors in equation ([7) in the policy form

P P
Tt;d = thi,j(ﬂj‘v + et)f,j) = Z hti,j(ej‘( + et)f,j) ) (12)
j=1 j=1
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with parameter vectors 0;’( € R™ and exploration noise vectors effj € R™. To learn full stiffness matrices,

the policy (L0) must be parameterized by m x m parameter matrices for each of the p basis functions

p p
KP =) he (K] +ef ;)= h ;0] +e ;) (13)
j=1 j=1

f .
isJ
0;5 = ,u;-'( and Of = uf form in combination the policy output &, 4 in equation (f[3)) which can be interpreted

with parameter matrices 9}7 € R™*™ and exploration noise matrices € € R™*™  These parameters

as motor command for the PI? algorithm. As a consequence the immediate cost can be expressed, as for the
P12 algorithm, in the form [4]

1. ..
T, = q, + §$£7dR mti7d (14)

with an arbitrary state-dependent cost function ¢;, and a quadratic control weight matrix R.
The exploration vector for the trajectory in equation ([L2) is drawn from a zero-mean Gaussian distribution
X

eg";j ~ N(O0, Efj) with variance 3; for each basis function. Similarly, the exploration matrix in equation

(L3) is drawn from ez’j ~ N(0, Efj), despite the variance ij have to be chosen to guarantee that the
initialized coordination matrices Kf € R™*™ in (@) are symmetric and positive-semidefinite. Recalling that
the sum of two symmetric and positive-semidefinite matrices is a symmetric and positive-semidefinite matrix,
a symmetric and positive-semidefinite full stiffness matrix KZ? is obtained in (fL3)) if the exploration matrices
are all symmetric and positive-semidefinite. These properties are also retained when applying PI%, where the
parameters are temporal averaged, due to the fact that a weighted averaging over positive-semidefinite ma-
trices yields a positive-semidefinite matrix [12].

Considering equation (f[4)), the generalized cost term from PI2 algorithm in [4] can be expressed as

N—-1 1 N-1
S(T,) = ¢tN -+ Z Qtj + 5 Z ii‘tj;’deI.)tj’d (15)
j=i j=i+1

where ¢, is the terminal cost. The generalized cost of each rollout path defines a probability of a path Tf as

k
prt) = 5T (16)
Zk:1 ES(Ti)
with automatic sensitivity regulation term
S(Tl-“) — min S(T’-“)
Eg(mh) = —h g i 17
s(7i) = exp < * max S(Tk) — min S(F) (17)

that maximizes the discrimination between experienced paths for every time step ¢ with sensitivity regulation
constant h) [4]. Probability-weighted averaging over K rollouts yields the trajectory and stiffness parameter
updates at each time step

K
X kN Xk
50t¢,j = ZP(TZ‘)%,J‘ )
k=1

% (18)
P,k
595,3' = ZP("?)%,J'
k=1
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and temporal weighted averaging over IV time steps

SN = i)y, ;007

50F = 7
’ ziN:_ol Py, (N — 1)
N-1 ) P (19)
607 = 2izo (N —0)y;,j00y,
L (N )
leads eventually to parameter updates
0¥ «— oY + 0%
J : J (20)

P P P
07 «— 67 + 56’

individually performed for each basis function j = 1,2,...,p. As suggested in [4], update equations (fL9) take
the activation of the j-th basis function v, ; from equation (B) into account. The pseudocode of the resulting
C-PI2 algorithm is given in Algorithm fil.

2.3 Learning Force Profiles using External Stimuli

Interactions with unfamiliar environments require to compensate for instability and unknown forces. Studies
on human subjects have revealed in [[13] that the central nervous system (CNS) reduces motion errors when
interacting in novel environments trial after trial by adapting feedforward control to overcome environment
forces. On the other hand, it has been observed that slightly perturbed arm motions tend to return to the
undisturbed trajectory driven by spring-like muscle viscoelasticity and the stretch reflex [14]. Thus, a restoring
force acts towards the undisturbed trajectory, whereby muscles and reflexes impose stiffness and damping
that provide feedback during motions and can be adapted to compensate for dynamic environments [15]. To
sum up, the human strategy is to adapt endpoint forces and viscoelasticity by minimizing error and effort as
well as ensuring a constant stability margin [110].

To adopt this human movement behaviors, a RL reward/cost function can be designed to compensate for
interaction forces in unknown environments by increasing exerted forces and impedance only when a task
requires it, e.g. to reduce positional deviations. Furthermore, external forces-torques sensing capabilities may
allow to incorporate a valuable learning stimuli in form of measured interaction forces into the reward/cost
function to provide feedback about exerted forces. In this context, a cost function can be proposed as

Tt = Wacc ||93t” + Wyain Z )\fl + Wegt HTt,extH + Wask gt (21)
l

where g; constitutes an arbitrary cost function term that describes the primary task goal. This goal term might
for example penalize positional deviations for phases of a task where precision is required or it might be a more
abstract description of a complex task. Other terms in (21) are lower level motor control variables. The term
||&:|| penalizes high end-effector accelerations to avoid high-jerk motions. High stiffness gains are penalized
throughthesum ), )\fl over the eigenvaluesa of the stiffness/coordination matrix Kf to facilitate a compliant
behavior. Eventually, interaction forces are reduced through the term || T c¢|| that brings the external force-
torque sensinginto consideration. The cost weights Wacc, Wyain, Wext, Wiask allow to prioritize different aspects
of the cost function (27)) according to the task, whereby the task weight wy,s; should be chosen sufficiently high
compared to the other weights in order to fulfill the task goal. Penalizing high accelerations, high stiffness gains

3Eigenvalues are used to quantify the magnitude of stiffness in full matrices.

WSAPHAW Page 7 of [[3



ICT-287513 SAPHARI

Deliverable D6.2.1

Algorithm 1 C-PI? pseudocode

Require:

10:
11:
12:
13:
14:
15:

16:

17:
18:

19:

20:
21:

22:

23:

T .
Tt; = qt; + mti,d]% Lt;,d
Pugg
Q‘X’lmt HP,zmt
X P
DD s

while parameters OX 07J not converged do

Perform K rollouts
fork=1,2,...,Kdo
Perform k-th rollout T%:
fori =1,2,...,Ndo
Draw exploration samples:
et~ N0, 255 et ~ N (0,27
Generate path and execute policy:

X, Xk,
Ty;a = E he 5 (05" + €.5);

j=1
P
K{ = Zhh ](07977, +6t J)
j=1
ifi,d = KE (mti,d - mti) - de:tﬁ
end for
end for

Estimate parameter update for each time step:
fori=1,2,...,Ndo
Evaluation for each time step and rollout Tf :
fork=1,2,...,Kdo

N-1
k k k

) = iy + Z%j

1 N-

3 Z &5;.4)" R, ai

. S(rt) ~mins(rh) .
Es(Tf) = &xp <_h)‘ max S(7F) — min S(Tf)> |

Es(t})
f:l ES(Tf) 7

l\D

Prt) =

end for
Probability weighted averaging over K rollouts:

507 ZP e

69;’3 Z:PTZ et 7,

end for
Update through temporal averaging over time steps:
g+t _gtn 4 Zuzo (V= )00,
‘ Yo Y (N —1)

07’,n+1 _ 97>,n + Zi\]?)l( —1 th Jéot ]
i = ST L SAPHARI

i

end while

> cost function

> terminal cost

> temporal weighting basis functions
> initial policy parameters

> exploration noise variances

> number of rollouts per epoch

> sensitivity regulation constant
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and high interaction forces facilitates safe human-robot interaction and allows to compensate for interaction
forces in unknown environments by increasing these variables trial after trial when phases of the task require
it to succeed in the primary task goal. This allows a human-like adaption of a force profile for interactions with
environment and humans.

2.4 Experimental Results

The effectiveness of the C-PI2 in combination with an external force-torque sensor signal as learning stimuli is
demonstrated on a 7 DoFs KUKA LWR IV+ manipulator.

In order to refine and adapt the policy, the parameter space must be explored by perturbing the parameters
through exploration noise €; ~ N(0, X.) with variance X, drawn form a zero-mean Gaussian distribution.
These exploration vectors may be sampled at each time step, which results in highly varying noise signals.
Another option is to draw one exploration sample at the beginning of a rollout and to keep it constant during
the entire rollout. We decided to use a constant exploration noise in all the experiments to quickly reach
convergence and thus to require a smaller number of rollouts for a good solution.

The only open tuning parameter in C-PI2 (as for PI?) is the magnitude of the exploration noise £. The explo-
ration noise magnitude is decreased over the number of updates ¥ by multiplying it with a decay parameter
7 set to 47 = 0.99” to increase the exploitation of the learned information.

The number of re-used rollouts for learning in C-PI2 is set to ¢ = 5 and the number of rollouts per epoch
used for parameter updating is set to X = 10. Thus, C-PI?> updates after the first 10 rollouts and then af-
ter 5 more rollouts using these 5 new rollouts and the best 5 of the latter epoch and this is repeated for all
subsequent updates.

Object Pushing

The effectiveness of the novel C-PI? algorithm in combination with an external force-torque stimuli incorpo-
rated in the RL reward function is evaluated on a real 7 DoFs KUKA/DLR Lightweight Robot (LWR). The task
thereby consists of pushing a box with the end-effector at constant velocity. Thereby, C-PI? has to utilize its
ability of simultaneously learning trajectory and stiffness parameters in order to succeed in this task. Push-
ing operations include a large number of possibly unstable contacts. Hence, it is interesting to evaluate the
performance of the C-PI? with an external force-torque reward stimuli.

The robot has to push the box on a table until it reaches the goal position ;,, = [—0.5087,0.4232, 0.0501]T.
The end-effector of the robot is initially placed at x;, = [—0.5459, —0.0144, 0.0501]T. Hence, the major part
of the movement occurs in the second Cartesian dimension (40.88 cm in xo-direction). The box is placed ap-
proximately 5 cm away from the end-effector position in the zo-direction, as illustrated in figure . The physical
contact will be established soon after the movement is initiated.

The estimated external torques are considered in the RL cost function

T = Wacc H:EH + wgain Z )‘ZD + Wegt HTextH + Wyel g (22)
l

while the terminal cost is chosen as

¢tN = Wmove HCUH + Wyoal HCCtN - CCH . (23)

As long as it is compatible with the primary task goal defined in g, the cost function (22) avoids high-jerk
motions, encourages compliant behaviors ()\lp are the eigenvalues of full stiffness matrix KP) and reduces in-
teraction forces using torque sensing. The terminal cost penalizes distance from the end-effector goal position
and motions after a planned movement duration of 10 s. The primary goal of the object pushing task in hand is
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Figure 2: 7 DoFs KUKA/DLR Lightweight Robot (LWR) in its initial pose for an object pushing task: The aim of
this RL task is to push a box to a given goal position along the edge of a table. Physical contact between robot
end-effector and object will be established soon after the movement is initiated.

defined as holding a constant end-effector velocity of 0.1 m/s in xo-direction and zero in x1- and x3-direction
while moving from start to end position, which yields in

g= 0.1] —x| . (24)
0

Hence, the cost weight w,,; in equation (22) must be chosen sufficiently high to ensure the primary relevance
of this cost function term. The cost function weights are chosen as wuc. = 1€3, Wyqin = 5, Wezt = 8€3, Wye =
75, Winove = 5€4, W40 = 5€5. The policy is initialized through a user demonstration by manually guiding
the robot end-effector without the object. The Correlated DMPs are endowed with p = 10 basis functions
equally distributed over the movement duration of 10 s with variances E]T =03( =1,2,...,p) and the
varying stiffness is initialized through PbD within the range [nﬁlm = 300, ﬁﬁaw = 500] and with initial gain
kP = 400. Thereby, the stiffness matrices are deliberately initialized with lowf values to facilitate a compliant
behavior as long as the task goal allows it, which means the robot has to learn to increase its stiffness when
the task requires it.

The standard deviation of trajectory exploration is set to £* = 0.01 and the stiffness exploration noise is
generated as covariance matrices drawn from a zero-mean Gaussian distribution with a standard deviation that
is scaled according to the initial stiffness values multiplied with factor 0.02. This results in stiffness exploration
matrices with a standard deviation of 2% of the initial values which are then added to the stiffness parameter
matrices that remain symmetric and positive semi-definite. Furthermore, no noise will be added to the first
and last basis functions and neither will their parameters be updated during learning to maintain smooth
motion transitions from starting position towards desired trajectory or from desired trajectory towards the
goal position.

Figure B compares the velocities of the initial trajectory learned through PbD and the trajectory refined
with C-PI? (after 150 rollouts). The initial velocity learned by PbD presents high peaks that reveal the instability
of this robot-object interaction. At the beginning the robot is extremely compliant and it is hardly able to exert
enough force to overcome the inertia of the object and the friction between object and table surfaces. After
learning with C-PI? the robot velocity is significantly closer to the desired constant value. The usage of an
external force-torque stimuli in the reward function helps to keep interaction forces as low as the primary task

“The realizable Cartesian stiffness range of the KUKA/DLR Lightweight Robot lays between 100 and 2000.
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Figure 3: Robot velocity (zo-direction) in the object pushing task: The initial velocity (blue line) is refined using

C-PI? (red line) to stay as close as possible to a constant target velocity (green dashed line).

allows it. The measured external torques compared in figure f show that the forces exerted on the object are

reduced applying C-PI>.
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Figure 4: The initial external torque (blue line) corresponds to a reproduction of the user demonstration. The
norm of the interaction forces is reduced applying C-PI? (red line).
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