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ExecuƟve Summary
This deliverable of WP6 deals with the problem of mulƟmodal reacƟve moƟon generaƟon, considering not
only trajectories of moƟon but also force and impedance paƩerns. This is a key aspect in all the tasks that
require the robot to physically interact with the environment.

TUM improved the dynamical system (DS)modulaƟon technique for reacƟve collision avoidance to guaran-
tee the Lyapunov stability of the modulated DS. The original formulaƟon, in fact, do not consider a full stability
analysis of the modulated dynamical system. Despite it is possible to show that the equilibrium points of the
modulated DS are not affected by the modulaƟon matrix, the presence of periodic orbits cannot be excluded.
The stability, as well as the avoidance of possible obstacles, are guaranteed in our novel formulaƟon by a cus-
tomized control input computed solving a constrained opƟmizaƟon problem. Indeed, stability and collision
avoidance are considered as constraints of the opƟmizaƟon problem for which an analyƟcal soluƟon exists.
Hence, the algorithm can be implemented and applied in real-Ɵme. Preliminary simulaƟon results show the
effecƟveness of the proposed approach.

Regarding force and impedance paƩerns generaƟon, TUM proposed a novel approach, based on reinforce-
ment learning (RL), to learn impedance behaviors by robot self pracƟse. The proposed approach combines the
benefits of two state-of-the-art approaches, giving the possibility to learn full sƟffness matrices. Hence, the
novel approach takes into account the interdependency among different degrees-of-freedom (or different di-
recƟons in the Cartesian space). Moreover, the external applied torque is explicitly considered in the reward
funcƟon and minimized during the learning procedure. The effecƟveness of the proposed approach is demon-
strated with an experiment on a 7 degrees-of-freedom KUKA LWR IV+ manipulator.
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1 OpƟmal modulaƟon of dynamical systems
In the first period of the project TUM developed a reacƟve collision avoidance algorithm, namely the distance-
based Dynamical System (DS) modulaƟon, capable to locally modify the dynamics of a first order system to
avoid possible collisions with fixed [1] and moving obstacles [2]. The algorithm extends the preliminary work
in [3] to the case of obstacles represented as point clouds. A suitableModulaƟonMatrixM(p) is used tomod-
ulate the DS, i.e. ṗ = M(p)f(p), where p represents the current robot posiƟon. The modulaƟon does not
affect the equilibrium points of themodulated DS and it guarantees the obstacle surface will not be penetrated
during the moƟon.

The modulaƟon matrix depends on the state (posiƟon) of the modulated DS. The state dependency of the
modulaƟon matrix makes the modulated DS non-linear also if f is linear. In general, non-linear systems are
not always guaranteed to reach their equilibria, also when those equilibrium points are stable. As an example,
consider the linear Ɵme invariant system:

ṗ = Ap =

−8.2 1 1
−45 −3 0
0 8.3 5.3

p (1)

that has a globally asymptoƟcally stable (GAS) equilibrium at the origin (the eigenvalues ofA are all negaƟve).
Puƫng a spherical object of radius r = 0.1, centered at c = [0.2 0.01 0.1], the modulated system follows a
periodic orbit without converging to the equilibrium (see Figure 1(a)).
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(b) OpƟmal DS ModulaƟon

Figure 1: (a) The modulated system follows a periodic orbit without converging to the equilibrium point. (b)
The opƟmizaƟon of the modulated velocity guarantees the convergence to the equilibrium point.

1.1 Modulated Velocity OpƟmizaƟon
TUM proposes an approach to avoid the robot follows unexpected periodic trajectories, by compuƟng a suit-
able velocity solving a constrained opƟmizaƟon problem. Let us assume that the autonomous system ṗ =
f(p) has a globally asymptoƟcally stable (GAS) equilibrium p̂, and let’s call Vf (p) a Lyapunov funcƟon for that
system. A velocity f ′ that guarantees the convergence to the goal and the impenetrability can be calculated
solving the following opƟmizaƟon problem:

min
f ′

1

2
∥f ′ −Mf∥2

s. t. V̇f = ∇Vff ′ ≤ −γ, γ > 0, γ(0) = 0

V̇f = 0, p = p̂

n̂Tf ′ = 0, ∀p̄

(2)
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where the first two constraints guarantee that p̂ is GAS. The third equality constraint is the impenetrability
condiƟon, i.e. the normal component of the velocity vanishes on the obstacle surface.

Assuming that f ′ = Mf + u, the equality constraint in (2) can be saƟsfied puƫng n̂Tu = 0, ∀p. The
funcƟon γ(p) is chosen as1 γ(p) = min(γ1, a(1 − e−b||p||)), γ1 > 0, where a and b are tunable parameters.
Hence, γ(p) is posiƟve definite and it vanishes only at the origin. The maximum value of γ(p) is bounded to
γ1 to avoid that, far from the equilibrium (||p|| ≫ 0), a bigu (||u|| ≫ 0) is required to saƟsfy V̇f (p) ≤ −γ(p).
Under those assumpƟons, the Karush-Kuhn-Tucker (KKT) condiƟons for the opƟmizaƟon problem in (2) can be
wriƩen as: 

u+ µ(∇Vf )T + δn̂ = 0

∇Vfu ≤ −γ −∇VfMf

µ
(
∇Vff ′ + γ

)
= 0

∇Vff ′ = 0, p = p̂

nTu = 0

(3)

Solving the system of KKT condiƟons (3) it is possible to compute the opƟmal soluƟon u⋆ of (2). It is straight-
forward to verify that the opƟmal control input u⋆ can be expressed as:

u⋆ =


−Mf p = p̂

0 V̇f ≤ −γ
− µ(∇Vf )T − δn̂ otherwise

(4)

where µ =
γ +∇VfMf − (∇Vf n̂)(n̂TMf)

∥∇Vf∥2 − |∇Vf n̂|2

δ = n̂TMf − µ∇Vf n̂
(5)

As shown in Figure 1(b), the computed opƟmal control input is able to drive the robot toward the goal posiƟon
while avoiding possible collisions.

2 Reinforcement learning of impedance behaviors
TUM extended the standard2 PI2 to learn couplings between joints (full sƟffness matrices) rather than gain
schedules for each joint individually as in [6]. The benefits of taking into account such coupling informaƟon in
off-diagonal elements of sƟffness matrices have been highlighted in several research works [7–9] which imply
that the associaƟon of full sƟffness matrices enables to learn synergies, coordinaƟon and couplings in motor
control. A further novel idea TUM proposed is to consider external force-torque sensing as learning sƟmuli
in the reward funcƟon of the RL algorithm. This idea allows to compensate for unknown contact forces and
instability in a human-like manner [10] by increasing contact forces trial aŌer trial unƟl a primary task goal can
be accomplished, e.g. the minimizaƟon of posiƟonal deviaƟons imposed by interacƟon disturbances, which is
also defined in the reward funcƟon.

1When the DS has a GAS equilibrium in p̂ ̸= 0 we simply chose γ(p) = min(γ1, a(1− e−b||p−p̂||)).
2Compared to other approaches, like Policy learning by WeighƟng ExploraƟon with the Returns (PoWER) [5], PI2 has no limitaƟon

on the choice of the reward funcƟon.
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2.1 Correlated Dynamic Movement PrimiƟves (DMPs)
In Correlated DMPs [11], training data are given in terms of end-effector posiƟon x ∈ Rm, velocity ẋt ∈ Rm

and acceleraƟon ẍt ∈ Rm, and the desired acceleraƟon command ẍt,d ∈ Rm is generated as:

ẍt,d =

p∑
j=1

ht,j
[
KP

j (µ
X
j − xt)− κV ẋt

]
(6)

The dynamical system in (6) can be considered as a spring-damper systemwith aƩractor vectorsµX
j ∈ Rm, full

sƟffness matrices (i.e. coordinaƟon matrices)KP
j ∈ Rm×m and damping gain κV ∈ R. The aƩractor vectors{

µX
j

}p

j=1
and full coordinaƟon matrices

{
KP

j

}p

j=1
are learnable policy parameters. In order to reproduce a

desired path xti,d, ẋti,d, ẍti,d ∈ Rm in each Ɵme step ti, i = 0, 1, . . . , N − 1, the trajectory can be computed
by summarizing the weighted aƩractor points over all basis funcƟons to

xti,d =

p∑
j=1

hti,jµ
X
j , (7)

with temporal weighƟng basis funcƟons

hti,j =
ψti,j∑p
l=1 ψti,l

, ψti,j = N (ti;µ
T
j ,Σ

T
j ) (8)

composed of equally in Ɵme distributed GaussiansN (µTj ,Σ
T
j ) with centers µTj and variances ΣT

j . The Gaus-
sians are acƟvated by the canonical system

1

τ
ν̇ti = −αννti −→ ti = −

ln(νti)
αντ

(9)

where the Ɵme constant αν and the temporal scaling factor τ determine the movement duraƟon. νt is set to
νt = 1 to iniƟate themovement and then converges to zero. Accordingly, the temporal varying sƟffness matrix
KP

ti can be esƟmated by

KP
ti =

p∑
j=1

hti,jK
P
j (10)

to generate the PD motor command

ẍti,d = KP
ti (xti,d − xti)− κV ẋti . (11)

2.2 CoordinaƟon Policy Improvement with Path Integrals (C-PI2)
Previous approaches to learn DMP parameters through PI2 have considered each DoF independently, thus the
motor control variable of each joint or task space dimension is esƟmated individually. In order to addiƟon-
ally learn the couplings between motor control variables, the PI2 algorithm must be viewed from a different
perspecƟve.

A trajectory can be learned by parameterizing the aƩractors in equaƟon (7) in the policy form

xti,d =

p∑
j=1

hti,j(µ
X
j + ϵXti,j) =

p∑
j=1

hti,j(θ
X
j + ϵXti,j) , (12)
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with parameter vectors θX
j ∈ Rm and exploraƟon noise vectors ϵXti,j ∈ Rm. To learn full sƟffness matrices,

the policy (10) must be parameterized bym×m parameter matrices for each of the p basis funcƟons

KP
ti =

p∑
j=1

hti,j(K
P
j + ϵPti,j) =

p∑
j=1

hti,j(θ
P
j + ϵPti,j) (13)

with parameter matrices θP
j ∈ Rm×m and exploraƟon noise matrices ϵPti,j ∈ Rm×m. These parameters

θX
j = µX

j and θP
j = µP

j form in combinaƟon the policy output ẍti,d in equaƟon (11) which can be interpreted
as motor command for the PI2 algorithm. As a consequence the immediate cost can be expressed, as for the
PI2 algorithm, in the form [4]

rti = qti +
1

2
ẍT
ti,d

Rẍti,d (14)

with an arbitrary state-dependent cost funcƟon qti and a quadraƟc control weight matrixR.
The exploraƟon vector for the trajectory in equaƟon (12) is drawn from a zero-mean Gaussian distribuƟon

ϵXti,j ∼ N (0,ΣX
ϵ,j) with variance ΣX

ϵ,j for each basis funcƟon. Similarly, the exploraƟon matrix in equaƟon
(13) is drawn from ϵPti,j ∼ N (0,ΣP

ϵ,j), despite the variance ΣP
ϵ,j have to be chosen to guarantee that the

iniƟalized coordinaƟon matrices KP
j ∈ Rm×m in (6) are symmetric and posiƟve-semidefinite. Recalling that

the sum of two symmetric and posiƟve-semidefinite matrices is a symmetric and posiƟve-semidefinite matrix,
a symmetric and posiƟve-semidefinite full sƟffness matrix KP

ti is obtained in (13) if the exploraƟon matrices
are all symmetric and posiƟve-semidefinite. These properƟes are also retained when applying PI2, where the
parameters are temporal averaged, due to the fact that a weighted averaging over posiƟve-semidefinite ma-
trices yields a posiƟve-semidefinite matrix [12].

Considering equaƟon (14), the generalized cost term from PI2 algorithm in [4] can be expressed as

S(τ i) = ϕtN +

N−1∑
j=i

qtj +
1

2

N−1∑
j=i+1

ẍT
tj ,d

Rẍtj ,d (15)

where ϕtN is the terminal cost. The generalized cost of each rollout path defines a probability of a path τ k
i as

P (τ k
i ) =

ES(τ
k
i )∑K

k=1ES(τ k
i )

(16)

with automaƟc sensiƟvity regulaƟon term

ES(τ
k
i ) = exp

(
−hλ

S(τ k
i )−minS(τ k

i )

maxS(τ k
i )−minS(τ k

i )

)
(17)

that maximizes the discriminaƟon between experienced paths for every Ɵme step i with sensiƟvity regulaƟon
constant hλ [4]. Probability-weighted averaging overK rollouts yields the trajectory and sƟffness parameter
updates at each Ɵme step

δθX
ti,j =

K∑
k=1

P (τ k
i )ϵ

X ,k
ti,j

,

δθP
ti,j =

K∑
k=1

P (τ k
i )ϵ

P,k
ti,j

(18)
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and temporal weighted averaging overN Ɵme steps

δθX
j =

∑N−1
i=0 (N − i)ψti,jδθ

X
ti,j∑N−1

i=0 ψti,j(N − i)
,

δθP
j =

∑N−1
i=0 (N − i)ψti,jδθ

P
ti,j∑N−1

i=0 ψti,j(N − i)

(19)

leads eventually to parameter updates

θX
j ← θX

j + δθX
j ,

θP
j ← θP

j + δθP
j

(20)

individually performed for each basis funcƟon j = 1, 2, . . . , p. As suggested in [4], update equaƟons (19) take
the acƟvaƟon of the j-th basis funcƟon ψti,j from equaƟon (8) into account. The pseudocode of the resulƟng
C-PI2 algorithm is given in Algorithm 1.

2.3 Learning Force Profiles using External SƟmuli
InteracƟons with unfamiliar environments require to compensate for instability and unknown forces. Studies
on human subjects have revealed in [13] that the central nervous system (CNS) reduces moƟon errors when
interacƟng in novel environments trial aŌer trial by adapƟng feedforward control to overcome environment
forces. On the other hand, it has been observed that slightly perturbed arm moƟons tend to return to the
undisturbed trajectory driven by spring-like muscle viscoelasƟcity and the stretch reflex [14]. Thus, a restoring
force acts towards the undisturbed trajectory, whereby muscles and reflexes impose sƟffness and damping
that provide feedback during moƟons and can be adapted to compensate for dynamic environments [15]. To
sum up, the human strategy is to adapt endpoint forces and viscoelasƟcity by minimizing error and effort as
well as ensuring a constant stability margin [10].

To adopt this human movement behaviors, a RL reward/cost funcƟon can be designed to compensate for
interacƟon forces in unknown environments by increasing exerted forces and impedance only when a task
requires it, e.g. to reduce posiƟonal deviaƟons. Furthermore, external forces-torques sensing capabiliƟes may
allow to incorporate a valuable learning sƟmuli in form of measured interacƟon forces into the reward/cost
funcƟon to provide feedback about exerted forces. In this context, a cost funcƟon can be proposed as

rt = wacc ∥ẍt∥+ wgain

∑
l

λPt,l + wext ∥T t,ext∥+ wtaskgt (21)

where gt consƟtutes an arbitrary cost funcƟon term that describes the primary task goal. This goal termmight
for example penalize posiƟonal deviaƟons for phases of a task where precision is required or it might be amore
abstract descripƟon of a complex task. Other terms in (21) are lower level motor control variables. The term
∥ẍt∥ penalizes high end-effector acceleraƟons to avoid high-jerk moƟons. High sƟffness gains are penalized
through the sum

∑
l λ

P
t,l over the eigenvalues

3 of the sƟffness/coordinaƟonmatrixKP
t to facilitate a compliant

behavior. Eventually, interacƟon forces are reduced through the term ∥T t,ext∥ that brings the external force-
torque sensing into consideraƟon. The costweightswacc, wgain, wext, wtask allow to prioriƟze different aspects
of the cost funcƟon (21) according to the task, whereby the taskweightwtask should be chosen sufficiently high
compared to the other weights in order to fulfill the task goal. Penalizing high acceleraƟons, high sƟffness gains

3Eigenvalues are used to quanƟfy the magnitude of sƟffness in full matrices.
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Algorithm 1 C-PI2 pseudocode
Require:

rti = qti + ẍT
ti,d

Rẍti,d ◃ cost funcƟon
ϕtN ◃ terminal cost
hti,j ◃ temporal weighƟng basis funcƟons
θX ,init
j , θP,init

j ◃ iniƟal policy parameters
ΣX

ϵ , Σ
P
ϵ ◃ exploraƟon noise variances

K ◃ number of rollouts per epoch
hλ ◃ sensiƟvity regulaƟon constant

1: while parameters θX
j , θ

P
j not converged do

2: PerformK rollouts:
3: for k = 1, 2, . . . ,K do
4: Perform k-th rollout τ k:
5: for i = 1, 2, . . . , N do
6: Draw exploraƟon samples:
7: ϵX ,k

ti,j
∼ N (0,ΣX ,k

ϵ,j ); ϵP,k
ti,j
∼ N (0,ΣP,k

ϵ,j );
8: Generate path and execute policy:

9:

xti,d =

p∑
j=1

hti,j(θ
X ,n
j + ϵX ,k

ti,j
);

KP
ti =

p∑
j=1

hti,j(θ
P,n
j + ϵP,k

ti,j
);

ẍk
ti,d = KP

ti(xti,d − xti)− κV ẋti ;

10: end for
11: end for
12: EsƟmate parameter update for each Ɵme step:
13: for i = 1, 2, . . . , N do
14: EvaluaƟon for each Ɵme step and rollout τ k

i :
15: for k = 1, 2, . . . ,K do

16:

S(τ k
i ) = ϕk

tN +

N−1∑
j=i

qktj

+
1

2

N−1∑
j=i+1

(ẍk
tj ,d)

TRẍk
tj ,d;

ES(τ
k
i ) = exp

(
−hλ

S(τ k
i )−minS(τ k

i )

maxS(τ k
i )−minS(τ k

i )

)
;

P (τ k
i ) =

ES(τ
k
i )∑K

k=1 ES(τ k
i )

;

17: end for
18: Probability-weighted averaging overK rollouts:

19:

δθX
ti,j =

K∑
k=1

P (τ k
i )ϵ

X ,k
ti,j

;

δθP
ti,j =

K∑
k=1

P (τ k
i )ϵ

P,k
ti,j

;

20: end for
21: Update through temporal averaging over Ɵme steps:

22:

θX ,n+1
j = θX ,n

j +

∑N−1
i=0 (N − i)ψti,jδθ

X
ti,j∑N−1

i=0 ψti,j(N − i)
;

θP,n+1
j = θP,n

j +

∑N−1
i=0 (N − i)ψti,jδθ

P
ti,j∑N−1

i=0 ψti,j(N − i)
;

23: end while 	  
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and high interacƟon forces facilitates safe human-robot interacƟon and allows to compensate for interacƟon
forces in unknown environments by increasing these variables trial aŌer trial when phases of the task require
it to succeed in the primary task goal. This allows a human-like adapƟon of a force profile for interacƟons with
environment and humans.

2.4 Experimental Results
The effecƟveness of the C-PI2 in combinaƟon with an external force-torque sensor signal as learning sƟmuli is
demonstrated on a 7 DoFs KUKA LWR IV+ manipulator.

In order to refine and adapt the policy, the parameter spacemust be explored by perturbing the parameters
through exploraƟon noise ϵt ∼ N (0,Σϵ) with variance Σϵ drawn form a zero-mean Gaussian distribuƟon.
These exploraƟon vectors may be sampled at each Ɵme step, which results in highly varying noise signals.
Another opƟon is to draw one exploraƟon sample at the beginning of a rollout and to keep it constant during
the enƟre rollout. We decided to use a constant exploraƟon noise in all the experiments to quickly reach
convergence and thus to require a smaller number of rollouts for a good soluƟon.

The only open tuning parameter in C-PI2 (as for PI2) is the magnitude of the exploraƟon noise ξ. The explo-
raƟon noise magnitude is decreased over the number of updates ϑ by mulƟplying it with a decay parameter
γϑ set to γϑ = 0.99ϑ to increase the exploitaƟon of the learned informaƟon.

The number of re-used rollouts for learning in C-PI2 is set to σ = 5 and the number of rollouts per epoch
used for parameter updaƟng is set to K = 10. Thus, C-PI2 updates aŌer the first 10 rollouts and then af-
ter 5 more rollouts using these 5 new rollouts and the best 5 of the laƩer epoch and this is repeated for all
subsequent updates.

Object Pushing

The effecƟveness of the novel C-PI2 algorithm in combinaƟon with an external force-torque sƟmuli incorpo-
rated in the RL reward funcƟon is evaluated on a real 7 DoFs KUKA/DLR Lightweight Robot (LWR). The task
thereby consists of pushing a box with the end-effector at constant velocity. Thereby, C-PI2 has to uƟlize its
ability of simultaneously learning trajectory and sƟffness parameters in order to succeed in this task. Push-
ing operaƟons include a large number of possibly unstable contacts. Hence, it is interesƟng to evaluate the
performance of the C-PI2 with an external force-torque reward sƟmuli.

The robot has to push theboxon a table unƟl it reaches the goal posiƟonxtN = [−0.5087, 0.4232, 0.0501]T .
The end-effector of the robot is iniƟally placed at xt0 = [−0.5459,−0.0144, 0.0501]T . Hence, the major part
of the movement occurs in the second Cartesian dimension (40.88 cm in x2-direcƟon). The box is placed ap-
proximately 5 cm away from the end-effector posiƟon in the x2-direcƟon, as illustrated in figure 2. The physical
contact will be established soon aŌer the movement is iniƟated.

The esƟmated external torques are considered in the RL cost funcƟon

r = wacc ∥ẍ∥+ wgain

∑
l

λPl + wext ∥T ext∥+ wvelg (22)

while the terminal cost is chosen as

ϕtN = wmove ∥ẋ∥+ wgoal ∥xtN − x∥ . (23)

As long as it is compaƟble with the primary task goal defined in g, the cost funcƟon (22) avoids high-jerk
moƟons, encourages compliant behaviors (λPl are the eigenvalues of full sƟffness matrixKP ) and reduces in-
teracƟon forces using torque sensing. The terminal cost penalizes distance from the end-effector goal posiƟon
andmoƟons aŌer a plannedmovement duraƟon of 10 s. The primary goal of the object pushing task in hand is
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Figure 2: 7 DoFs KUKA/DLR Lightweight Robot (LWR) in its iniƟal pose for an object pushing task: The aim of
this RL task is to push a box to a given goal posiƟon along the edge of a table. Physical contact between robot
end-effector and object will be established soon aŌer the movement is iniƟated.

defined as holding a constant end-effector velocity of 0.1 m/s in x2-direcƟon and zero in x1- and x3-direcƟon
while moving from start to end posiƟon, which yields in

g =

∥∥∥∥∥∥
 0
0.1
0

− ẋ

∥∥∥∥∥∥ . (24)

Hence, the cost weightwvel in equaƟon (22) must be chosen sufficiently high to ensure the primary relevance
of this cost funcƟon term. The cost funcƟonweights are chosen aswacc = 1e3, wgain = 5, wext = 8e3, wvel =
7e5, wmove = 5e4, wgoal = 5e5. The policy is iniƟalized through a user demonstraƟon by manually guiding
the robot end-effector without the object. The Correlated DMPs are endowed with p = 10 basis funcƟons
equally distributed over the movement duraƟon of 10 s with variances ΣT

j = 0.3 (j = 1, 2, . . . , p) and the
varying sƟffness is iniƟalized through PbD within the range

[
κPmin = 300, κPmax = 500

]
and with iniƟal gain

κP = 400. Thereby, the sƟffness matrices are deliberately iniƟalized with low4 values to facilitate a compliant
behavior as long as the task goal allows it, which means the robot has to learn to increase its sƟffness when
the task requires it.

The standard deviaƟon of trajectory exploraƟon is set to ξX = 0.01 and the sƟffness exploraƟon noise is
generated as covariancematrices drawn froma zero-meanGaussian distribuƟonwith a standard deviaƟon that
is scaled according to the iniƟal sƟffness values mulƟplied with factor 0.02. This results in sƟffness exploraƟon
matrices with a standard deviaƟon of 2% of the iniƟal values which are then added to the sƟffness parameter
matrices that remain symmetric and posiƟve semi-definite. Furthermore, no noise will be added to the first
and last basis funcƟons and neither will their parameters be updated during learning to maintain smooth
moƟon transiƟons from starƟng posiƟon towards desired trajectory or from desired trajectory towards the
goal posiƟon.

Figure 3 compares the velociƟes of the iniƟal trajectory learned through PbD and the trajectory refined
with C-PI2 (aŌer 150 rollouts). The iniƟal velocity learned by PbD presents high peaks that reveal the instability
of this robot-object interacƟon. At the beginning the robot is extremely compliant and it is hardly able to exert
enough force to overcome the inerƟa of the object and the fricƟon between object and table surfaces. AŌer
learning with C-PI2 the robot velocity is significantly closer to the desired constant value. The usage of an
external force-torque sƟmuli in the reward funcƟon helps to keep interacƟon forces as low as the primary task

4The realizable Cartesian sƟffness range of the KUKA/DLR Lightweight Robot lays between 100 and 2000.
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Figure 3: Robot velocity (x2-direcƟon) in the object pushing task: The iniƟal velocity (blue line) is refined using
C-PI2 (red line) to stay as close as possible to a constant target velocity (green dashed line).

allows it. The measured external torques compared in figure 4 show that the forces exerted on the object are
reduced applying C-PI2.
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Figure 4: The iniƟal external torque (blue line) corresponds to a reproducƟon of the user demonstraƟon. The
norm of the interacƟon forces is reduced applying C-PI2 (red line).
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